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Mathematicians have long been intrigued by the sum1m + 2m + · · ·+ nm of the
first n integers, wherem is a nonnegative integer. The study of this sum of powers
led Jakob Bernoulli to the discovery of Bernoulli numbers and Bernoulli polynomials.
There are expressions for sums of powers in terms of Eulerian numbers and Stirling
numbers [5, p. 199]. In addition, past articles in thisMAGAZINE contain algorithms
for producing a formula for the sum involving powers ofm + 1 from that involving
powers ofm [1, 4]. (The algorithm in Bloom is actually Bernoulli’s method.)

This note involves a curious property concerning sums of integer powers, namely,

1m + 2m + · · ·+ (m− 1)m < mm, for m ≥ 1. (1)

In other words, the sum of them− 1 terms from1m to (m− 1)m is always less than
the single termmm, regardless of how largem is. This inequality is not true for an
arbitrary number of terms;1m + 2m + · · ·+ (n− 1)m is not necessarily less thannm

for all n, but the inequality is true whenn = m.
Proving (1) is not too difficult. In fact, one proof is a nice first-semester calcu-

lus problem using left-hand Riemann sums to underestimate the integral
∫ m

0
xm dx.

Another establishes(x + 1)m − xm > xm for x < m via the binomial theorem; re-
placingx successively with0, 1, 2, . . . , m− 1 and summing yields (1).

There is a deeper question here, though. Dividing (1) bymm produces the inequality
(

1
m

)m

+
(

2
m

)m

+ · · ·+
(

m− 1
m

)m

< 1. (2)

Since this relation holds regardless of the value ofm, a natural question to ask is
this: What is the limiting value of the expression on the left of (2) asm approaches
infinity? Our investigation of this value involves a useful tool in any mathematician’s
bag of tricks—one that is, unfortunately, not often taught in undergraduate courses—
the Euler-Maclaurin formula for approximating a finite sum by an integral. Along the
way we also prove (1) using Euler-Maclaurin, thus illustrating the use of the Euler-
Maclaurin formula with remainder.

Rota calls Euler-Maclaurin “one of the most remarkable formulas of mathematics”
[6, p. 11]. After all, it shows us how to trade a finite sum for an integral. It works much
like Taylor’s formula: The equation involves an infinite series that may be truncated at
any point, leaving an error term that can be bounded.

The formula uses the very numbers discovered by Bernoulli during his investiga-
tions into the power sum, and the error term uses Bernoulli’s polynomials. For ex-
ample, the second-order formula with error term is given inConcrete Mathematics[2,
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p. 469]:

n−1∑
j=0

f(j) =
∫ n

0

f(x)dx +
B1

1!

(
f(n)− f(0)

)
+

B2

2!

(
f ′(n)− f ′(0)

)

+(−1)3
1
2!

∫ n

0

B2({x})f ′′(x)dx, (3)

where

• Bi is theith Bernoulli number (B1 = −1/2, B2 = 1/6),
• B2(x) is the second Bernoulli polynomial:x2 − x + 1/6, and
• {x} = x− bxc.∗

Since{x} is the fractional part ofx, the functionB2({x}) in (3) is just the periodic
extension of the parabolaB2(x) = x2 − x + 1/6 from [0, 1] to the entire real number
line. In other words,B2({x}) agrees withB2(x) on [0, 1] and is periodic with period
1.

Proving (3) involves nothing more complicated than integration by parts. A brief
outline is as follows: Start with(1/2)

∫ 1

0
(y2 − y + 1/6) g′′(y) dy. Use integration by

parts twice and solve forg(0). Let g(y) = f(y + j), and then substitutex for y + j
to find an expression forf(j). Sum this expression asj varies from 0 ton− 1, noting
that the terms involvingf ′(j) andf ′(j + 1) telescope, while those involvingf(j + 1)
are absorbed into the sum.†This yields (3), sinceB2({y}) = B2({x}). The interested
reader is invited to fill in the details.

The full Euler-Maclaurin formula with no remainder term is given inConcrete
Mathematics[2, p. 471]:

m−1∑
j=0

f(j) =
∫ m

0

f(x)dx +
∞∑

k=1

Bk

k!

(
f (k−1)(m)− f (k−1)(0)

)
. (4)

Unfortunately, the infinite sum on the right-hand side often diverges. This formula can
also be proved using integration by parts; Lampret, in fact, shows how to use parts to
prove Euler-Maclaurin for arbitrary orders [3].

On to the proof of (1): We can easily verify the inequality for small values ofm. In
particular, form = 1, we have0 < 1 = 11, and form = 2, we have12 = 1 < 4 =
22. Form ≥ 3, we turn to Euler-Maclaurin. Pluggingf(x) = xm andn = m into (3)
yields

m−1∑
j=1

jm =
∫ m

0

xmdx− 1
2
mm +

1
12

mmm−1

− 1
2!

∫ m

0

B2({x})m(m− 1)xm−2dx

=
mm+1

m + 1
− 5

12
mm − 1

2

∫ m

0

B2({x})m(m− 1)xm−2dx. (5)

∗Need hypotheses on f.
†Is this clear? I needed help when working this out.
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Now, let’s deal with the error term. Completing the square on the parabolaB2(x)
gives usB2(x) = (x− 1/2)2 − 1/12. This tells us that the minimum value ofB2(x)
on [0, 1] is−1/12, occurring atx = 1/2, and the maximum value on[0, 1] is 1/6, oc-
curring at the two endpointsx = 0 andx = 1. SinceB2({x}) is the periodic extension
of B2(x) from [0, 1] to the real number line, the minimum and maximum values of
B2({x}) over the real numbers are−1/12 and1/6, respectively (which, incidentally,
occur infinitely often). This tells us that−1/2B2({x}) ≤ (−1/2)(−1/12) = 1/24.
Therefore,

−1
2

∫ m

0

B2({x})m(m− 1)xm−2dx ≤ 1
24

∫ m

0

m(m− 1)xm−2dx

=
m

24
mm−1 =

1
24

mm.

Plugging back into (5) produces

m−1∑
j=1

jm ≤ mm+1

m + 1
− 5

12
mm +

1
24

mm

< mm − 3
8
mm =

5
8
mm.

This establishes the inequality (1), namely1m + 2m + · · ·+ (m − 1)m < mm, for
all positive integersm, via the second-order Euler-Maclaurin formula with remainder.

We now move on to our main question—determining the limiting expression for
(

1
m

)m

+
(

2
m

)m

+ · · ·+
(

m− 1
m

)m

.

From our proof of (1), we know that the limit must be less than5/8. To find the exact
value we use the full Euler-Maclaurin formula (4). For fixedm andf(x) = xm, we
have

m−1∑
j=1

(
j

m

)m

=
1

mm

m−1∑
j=0

jm

=
1

mm

∫ m

0

xmdx +
1

mm

∞∑
k=1

Bk

k!

(
f (k−1)(m)− f (k−1)(0)

)

=
m

m + 1
+

1
mm

∞∑
k=1

Bk

k!
f (k−1)(m).

Sincef (k−1)(x) is nonzero only fork ≤ m + 1, this yields

m−1∑
j=1

(
j

m

)m

=
m

m + 1
+

1
mm

m+1∑
k=1

Bk

k!
f (k−1)(m)

=
m

m + 1
+

1
mm

m+1∑
k=1

[
Bk

k!
mm−k+1

(
m(m− 1) · · · (m− k + 2)

)]

=
m

m + 1
+

m+1∑
k=1

[
Bk

k!
m1−k

(
m(m− 1) · · · (m− k + 2)

)]
.
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There are exactlyk − 1 factors in the expressionm(m− 1) · · · (m − k + 2). Thus
the resulting polynomial ismk−1 plus a polynomial of degreek − 2. For our purposes,
all that matters of the latter polynomial is its degree. We can therefore use “big-O” no-
tation to expressm(m− 1) · · · (m− k + 2) asmk−1 + O(mk−2). Here,O(mk−2)
effectively means that the expression added tomk−1 is of order no larger than that of
mk−2. (For a more precise definition and a discussion of big-O notation, see Graham,
Knuth, and Patashnik [2].) Multiplying through bym1−k then yields the expression
1 + O (1/m). Substituting back in, we have

m−1∑
j=1

(
j

m

)m

=
m

m + 1
+

m+1∑
k=1

Bk

k!

[
1 + O

(
1
m

)]
.

Now we take the limit to get

lim
m→∞

m−1∑
j=1

(
j

m

)m

= lim
m→∞

{
m

m + 1
+

m+1∑
k=1

Bk

k!

[
1 + O

(
1
m

)]}

= 1 +
∞∑

k=1

Bk

k!
+ lim

m→∞

{
O

(
1
m

) m+1∑
k=1

Bk

k!

}
.

The crucial question for both the second and third terms is the convergence of∑∞
k=0 Bk/k!. Fortunately, the infinite sum is a special case of the exponential gener-

ating function for the Bernoulli numbers,

∞∑
k=0

Bk

xk

k!
=

x

ex − 1
,

valid for |x| < 2π [5, p.147]. Therefore,
∑m+1

k=1 Bk/k! is bounded by a constant,
yielding

lim
m→∞

{
O

(
1
m

) m+1∑
k=1

Bk

k!

}
= 0.

SinceB0 = 1, we have

lim
m→∞

m−1∑
j=1

(
j

m

)m

=
∞∑

k=0

Bk

k!
,

which gives us the simple limiting expression

lim
m→∞

[(
1
m

)m

+
(

2
m

)m

+ · · ·+
(

m− 1
m

)m]
=

1
e− 1

.

Thus, in the limit, the sum1m + 2m + · · · + (m − 1)m will represent(e − 1)−1

(approximately 0.582) ofmm.
The interested reader may enjoy showing that the left-hand side of (2) actually

increases to1/(e− 1). In addition, the excellent textConcrete Mathematicscontains
numerous further examples of the use of the Euler-Maclaurin summation formula [2,
pp. 469–489].
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