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A continued fraction is a representation of a number as a series of nested fractions.
For example, 3/7 has the following representation as a continued fraction:

3

7
= 0 +

1

2 + 1

3

.

Deeply nested continued fractions are difficult to typeset, and thankfully there is an
alternate notation:

3

7
= 0 +

1

2+

1

3
.

Continued fractions have been a topic of mathematical study for quite some time. For
example, Euler devotes a full chapter of his Introductio in Analysin Infinitorum [1] to
continued fractions.

We give a method of representing the usual construction of finite continued fractions
in terms of a grid. This provides a more visual way of viewing continued fractions
than one gets with the standard treatments. We hope that this alternative way of
representing continued fractions gives new insight into them; in fact, we describe an
unsolved problem involving continued fractions in terms of our grid representation.

Although the usual treatment of continued fractions is not geometric there are some
exceptions. One appears as part of Hancock’s Development of the Minkowski Geometry

of Numbers [2] (see Chapters VII and X); however, our representation is different from
anything in this work. Another is Klein’s geometric interpretation of the convergents
of an infinite continued fraction (see Olds [3, pp. 77–79]); this is also different from
what we are trying to do, as we are working only with finite continued fractions.

Simple, finite continued fractions. The representation of 3/7 given above is a
simple continued fraction — one in which the numerator of each fraction in the rep-
resentation is a 1. The simple continued fraction b1 + 1

b2+

1

b3+
· · · 1

bn
is also written as

[b1, b2, . . . , bn] with no loss of information.
The process of expressing 3/7 as a simple continued fraction goes something like

this. First, 3/7 is smaller than 1, so we represent it like so:

3

7
= 0 +

1
7

3

.

Then, we write 7/3 as a mixed fraction:

3

7
= 0 +

1

2 + 1

3

.

Since 3 is an integer we may stop; otherwise, we would have continued expressing
the denominator of the fraction most deeply nested as a mixed fraction, creating a
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fraction one level deeper in the process. The procedure ends, as this one does, when
the denominator of the most deeply nested fraction is an integer.

Our geometric representation of the process of finding the simple continued fraction
representation of a/b is as follows.

Algorithm 1 (Simple, finite continued fractions)

1. Input a and b from the fraction a/b.

2. Let r0 = a, r1 = b.

3. Start at position (r1, r0) on the grid.

4. Let i = 1.

5. While ri 6= 0

(a) Let bi = ⌊ri−1/ri⌋.

(b) Take bi steps of length ri down from (ri, ri−1).

(c) Let the new position be denoted (ri, ri+1). (This means ri+1 = ri−1 mod ri.)

(d) If ri+1 6= 0 then reflect about the 45-degree diagonal to the new position
(ri+1, ri).

(e) Let i = i + 1.

6. Let n = i − 1.

7. Output [b1, b2, b3, . . . , bn].

The algorithm can perhaps be best understood via an example. The representation
of 3/7 given above is generated from the algorithm via the series of steps A → B →
C → D → E → F shown in Figure 1. Reflection about the 45-degree diagonal
corresponds to inverting the fractional remainder, and bi steps correspond to bi being
in the denominator of the level i − 1 nested fraction, as can be seen in Figure 2.

The proof that Algorithm 1 generates a simple continued fraction representation of
a/b is as follows.

Theorem 1. Algorithm 1 gives the continued fraction representation a
b

= [b1, b2, b3, . . . , bn].

Proof. First, for any iteration i it is clear that ri−1 = biri + ri+1. Second, we must
have ri+1 < ri for all i ≥ 1; thus, the algorithm must terminate. Moreover, since the
algorithm terminates on completion of iteration n we have rn+1 = 0 and ri > 0 for
i ≤ n. The position at the start of iteration n is (rn, rn−1). Thus [bn] = bn = rn−1/rn.
Now, fix i, 1 ≤ i < n, and suppose rj−1/rj = [bj, bj+1, . . . , bn] for each j, i + 1 ≤ j ≤ n.
Thus ri−1/ri = bi + ri+1/ri = bi + 1

ri/ri+1
. Since ri/ri+1 = [bi+1, bi+2 . . . , bn] we have

ri−1/ri = [bi, bi+1, . . . , bn].
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Figure 1: Grid example for Algorithm 1

Position Geometric Operation Continued Fraction Thus Far
A Starting point
B Zero steps of 7 units each 0
C Reflect across diagonal 0 + 1

D Two steps of 3 units each 0 + 1

2

E Reflect across diagonal 0 + 1

2+
1

F Three steps of 1 unit each 0 + 1

2+
1

3

Figure 2: Interpretation of grid example for Algorithm 1

Algorithm 1 is also essentially the Euclidean algorithm for finding the greatest com-
mon divisor of a and b represented on a grid; all we need is the additional statement
gcd(a, b) = ri−1 at the end [4, p. 229]. Moreover, it is well-known that the operations
in the Euclidean algorithm are the same as those for producing the simple continued
fraction representation of a

b
[3, pp. 16-17]. Our proof, then, is not perhaps strictly

necessary, but we present it for completeness.

General finite continued fractions. Some continued fractions are not simple. For
example, 3/7 also has the following representation as a continued fraction:

3

7
= 1 −

2

4 − 1

2

General finite continued fractions, in which negative values and fractions with nu-
merators other than 1 are allowed, can be obtained by modifying Algorithm 1 in the
following manner.

Algorithm 2 (General finite continued fractions)
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1. Input a and b from the fraction a/b.

2. Let r0 = a, r1 = b.

3. Start at position (r1, r0) on the grid.

4. Let i = 1.

5. While ri 6= 0

(a) Choose an integer bi and take bi steps of length ri down from (ri, ri−1).

(b) Let the new position be denoted (ri, si).

(c) If si < 0

i. Then

A. Reflect about the horizontal axis to the new position (ri,−si).

B. Choose an ai+1 from the set of negative integers that divide si (ai+1

could be -1).

ii. Else choose an ai+1 from the set of positive integers that divide si (ai+1

could be 1).

(d) Take a single step of length |si|−si/ai+1 down, ending at position (ri, si/ai+1).

(e) Let ri+1 = si/ai+1.

(f) If ri+1 6= 0 then reflect about the 45-degree diagonal to the new position
(ri+1, ri).

(g) Let i = i + 1.

6. Let n = i − 1.

7. Output b1 + a2

b2+
a3

b3+
· · · an

bn
.

A major difference between Algorithm 1 and Algorithm 2 is that Algorithm 2 has
two situations in each iteration in which a choice is involved.

The representation of 3/7 given above and generated by Algorithm 2 is shown in
Figure 3. The value of ai is the numerator in the level i − 1 continued fraction, and
reflection about the horizontal axis (with the resulting negative ai) indicates a negative
sign, as we can see in Figure 4.

We now prove the correctness of Algorithm 2.

Theorem 2. If it terminates Algorithm 2 gives the continued fraction representation
a
b

= b1 + a2

b2+
a3

b3+
· · · an

bn
.

Proof. Because of the choice of the bi’s and ai’s there is no guarantee that Algo-
rithm 2 terminates. However, if it does it functions very much the same as does
Algorithm 1. The exceptions in iteration i are ai+1 and the possible reflection about
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Figure 3: Grid example for Algorithm 2

the horizontal axis; the latter, however, is captured by the sign of ai+1. As in the
proof of Algorithm 1, we have rn−1/rn = bn. Now, fix i, 1 ≤ i < n, and suppose
rj−1/rj = bj +

aj+1

bj+1+

aj+2

bj+2+
· · · an

bn
for each j, i + 1 ≤ j ≤ n. As in the proof of Algorithm

1 we have ri+1/ri = 1

bi+1+

ai+2

bi+2+
· · · an

bn
. Thus si/ri = ai+1ri+1/ri = ai+1

bi+1+

ai+2

bi+2+
· · · an

bn
, and

ri−1/ri = bi + si/ri = bi + ai+1ri+1/ri = bi + ai+1

bi+1+

ai+2

bi+2+
· · · an

bn
.

An unsolved problem. An open problem involving continued fractions can be ex-
pressed in terms of the grid representations given here. Zaremba’s conjecture is that
there is a constant B such that for any integer b > 1 there is an integer a, 0 < a < b,
such that a and b are relatively prime and the simple continued fraction representation
a/b = [0, b2, . . . , bn] has bi ≤ B for all i, 2 ≤ i ≤ n. [5, p. 395], [6, pp. 93–119].
Computational work indicates that B = 5 should suffice [7]. Since bi = ⌊ri−1/ri⌋ for
i ≤ n, this means that, in terms of the grid representation described by Algorithm 1,
Zaremba’s conjecture is that there is a constant B such that for any integer b > 1 there
is an integer a, 0 < a < b, such that a and b are relatively prime and all grid points in
the representation for a/b except for the final one lie in the cone in the first quadrant
with boundaries y = Bx and y = x/B. Figure 5 gives this set of feasible grid points,
for B = 5.

References

[1] Leonard Euler. Introductio in Analysin Infinitorum. Lausanne, 1748.

5



Position Geometric Operation Continued Fraction Thus Far
A Starting point
B One step of 7 units 1
C Reflect across horizontal axis 1−
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F Four steps of 2 units each 1 − 2
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G Reflect across horizontal axis 1 − 2

4−

H Reflect across diagonal 1 − 2

4−
1

I Two steps of 1 unit each 1 − 2

4−
1

2

Figure 4: Interpretation of grid example for Algorithm 2
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Figure 5: Grid representation of Zaremba’s conjecture
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