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One of the most important variants of the standard linear assignment problem is the bottleneck assignment
problem. In this paper we give a method by which one can find all of the asymptotic moments of a random
bottleneck assignment problem in which costs (independent and identically distributed) are chosen from a wide
variety of continuous distributions. Our method is obtained by determining the asymptotic moments of the time
to first complete matching in a random bipartite graph process and then transforming those, via a Maclaurin
series expansion for the inverse cumulative distribution function, into the desired moments for the bottleneck
assignment problem. Our results improve on the previous best-known expression for the expected value of a
random bottleneck assignment problem, yield the first results on moments other than the expected value, and
produce the first results on the moments for the time to first complete matching in a random bipartite graph
process.
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1. Introduction. The behavior of random assignment problems has been the subject of much study
in the last few years. One of the most well-known results, due to Aldous [2], is that if Z∗n is the opti-
mal value of an n × n random linear assignment problem with independent and identically distributed
(iid) exponential(1) costs then limn→∞E[Z∗n] = �(2) = �2/6. Many other results on the random lin-
ear assignment problem and its variants are summarized in the recent survey paper of Krokhmal and
Pardalos [13].

One of the most important of these variations is the bottleneck assignment problem. This problem
arises in scenarios in which we want to assign n resources to n tasks in such a way that the maximum
of the n assignment costs is minimized. For example, if we have n tasks to assign to n machines, the
machines operate in parallel, and we want to minimize the time at which the last task is completed, then
we have a bottleneck assignment problem. Formally, the bottleneck assignment problem is defined as
follows, where cij is the cost of assigning resource i to task j:

min max
1≤i,j≤n

cijxij

subject to

n∑
i=1

xij = 1 for each j, j ∈ {1, 2, . . . , n};

n∑
j=1

xij = 1 for each i, i ∈ {1, 2, . . . , n};

xij ∈ {0, 1} for all i, j.

For a summary of major results on and algorithms for solving the bottleneck assignment problem, see
Section 6.2 in the text of Burkard, Dell’Amico, and Martello [5, pp. 172–191].

Let c∗n be the optimal cost for an n × n bottleneck assignment problem. Pferschy [15] proved that if
costs are chosen independently from a continuous distribution having cumulative distribution function F
such that sup{x∣F (x) < 1} <∞ then limn→∞E[c∗n] = inf{x∣F (x) > 0}. When costs are iid uniform[0,1],
Pferschy gave the following results on the rate at which E[c∗n] approaches 0:

E[c∗n] < 1−
[

2

n(n+ 2)

]2/n
n

n+ 2
+

123

610n
, n > 78,

E[c∗n] ≥ 1− nB
(
n, 1 +

1

n

)
,

0
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where B(x, y) is the beta function. Asymptotically, these bounds yield

log n+ 

n
+O

(
(log n)2

n2

)
≤ E[c∗n] ≤ 4 log n

n
+O

(
1

n

)
.

In this paper we give a method by which one can determine all of the asymptotic moments – not just
the expected value – of a random bottleneck assignment problem in which costs are chosen iid from a
variety of continuous distributions. Knowing first and second moments means, of course, that we can also
determine variances. Our method applies to those distributions whose inverse cumulative distribution
function F−1 can be expanded in a Maclaurin series (a Taylor series about 0). Examples of distributions
for which this is the case include the uniform, the exponential, the half-normal, and the Pareto. For
certain values of the distribution’s parameters this can also be done for the beta, �2, gamma, Weibull,
and log-logistic distributions. For the distributions for which our approach can be applied we have, even
when sup{x∣F (x) < 1} = ∞, that limn→∞E[c∗n] = inf{x∣F (x) > 0}. However, our results also yield an
asymptotic rate at which E[c∗n] approaches inf{x∣F (x) > 0}. For example, in the case where costs are iid
uniform[0,1] our results give

E[c∗n] =
log n+ log 2 + 

n
+O

(
(log n)2

n7/5

)
.

Combining this with our results on the second moments yields

V ar[c∗n] =
�(2)− 2(log 2)2

n2
+O

(
(log n)2

n7/3

)
.

Our method builds on two fundamental properties of the bottleneck assignment problem: 1) its optimal
cost is taken by one of the cij ’s, and 2) the optimal cost depends only on the relative rank (from 1 to n2)
of the cij ’s and not on their numerical values [5, p. 172]. Focusing on the rank R of the optimal cost c∗n
among the cij ’s, then, can give insight into the behavior of c∗n. This is our approach: We find asymptotic
expressions for the moments of R and then use them, via the Maclaurin series expansion of F−1 for the
distribution in question, to find the moments of c∗n.

We obtain the moments of R through their relationship with the time to first complete matching in a
random bipartite graph process. (A complete matching in a bipartite graph with 2n vertices is a set of n
edges such that no two edges are incident on the same vertex.) Suppose we have two vertex sets V1 and

V2 with ∣V1∣ = ∣V2∣ = n. Define a random bipartite graph process B̃ = (Bt)
n2

0 in the following manner:
B0 is the empty bipartite graph on V1 and V2. For t ≥ 1, Bt is obtained from Bt−1 by adding an edge at
random between a vertex in V1 and a vertex in V2, all new edges being equally likely. Let �(match; B̃)
denote the first time for which a graph in the process B̃ has a complete matching. We then have the
following.

Lemma 1.1 Let R be the rank of the optimal cost of a random n× n bottleneck assignment problem. Let
B̃ be a random bipartite graph process on vertex sets V1 and V2 with ∣V1∣ = ∣V2∣ = n. Then, for any k,
P (R = k) = P (�(match; B̃) = k).

Proof. There are n2! distinct rankings for the costs in a random n × n bottleneck assignment
problem, and each ranking is equally likely. There are also n2! distinct random bipartite graph processes
on vertex sets V1 and V2, and each bipartite graph process is equally likely. Thus it suffices to show a one-
to-one mapping from the set of random n×n bottleneck assignment problems with distinct cost rankings
to the set of random bipartite graph processes on vertex sets V1 and V2 such that R = �(match; B̃) holds
under the mapping.

Suppose we have a specific n × n bottleneck assignment problem such that cost cij has relative rank
rij and that R is the rank of the optimal cost c∗n. For a random bipartite graph process, let tij denote
the time that edge (i, j) enters the graph. Then let B̃ be the bipartite graph process on V1 and V2 such
that, for each (i, j) pair, tij = rij . Clearly this defines a one-to-one mapping. Any feasible solution
to a bottleneck assignment problem gives rise to a complete matching under this mapping, and vice
versa, such that max{rij} = max{tij} for the edges (i, j) included in the feasible solution and matching.
Therefore, the smallest value of max{rij} over all possible feasible solutions must equal the smallest value
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of max{tij} over all possible matchings. But the former is, by definition, R, and the latter is �(match; B̃).
□

(Lemma 1.1 is similar to the ideas behind the class of threshold algorithms used to solve the bottleneck
assignment problem [5, p. 174].)

Lemma 1.1 implies that one can determine the moments of R by finding the moments of �(match; B̃),
and this is our approach. In fact, most of the work in this paper goes toward finding the moments of
�(match; B̃). A quantity related to �(match; B̃) is �(�(B) ≥ 1; B̃), the time when a random bipartite
graph process first attains minimum degree 1. Clearly, for any B̃, �(�(B) ≥ 1; B̃) ≤ �(match; B̃), and we
find the moments of �(�(B) ≥ 1; B̃) as part of the process of finding the moments of �(match; B̃). The
moments (including variances) of these two times in themselves constitute a contribution to the theory of
random graph processes. While the probability of a random bipartite graph having a particular minimum
degree or a complete matching has been studied extensively (see, for example, Erdős and Rényi [8], Frieze
and Pittel [10], and Frieze [9]), as far as we can determine there are no published results on the moments
of �(match; B̃) or �(�(B) ≥ 1; B̃). In addition, our work shows that the asymptotically dominant terms in
the moments of �(match; B̃) are precisely those of �(�(B) ≥ 1; B̃). This is not too surprising, as Bollobás
and Thomason [4] prove that P (�(match; B̃) = �(�(B) ≥ 1; B̃))→ 1 as n→∞.

In Section 2 we give several results that we need for the remainder of the paper. In Section 3 we
determine the moments of �(�(B) ≥ 1; B̃). In Section 4 we do the rest of the work (beyond that in
Section 3) needed to find the moments of �(match; B̃). Finally, Section 5 applies these results to the
random bottleneck assignment problem.

2. Preliminaries. There are several results on exact and asymptotic values of various sums that we
need for our subsequent work (mainly in determining the moments of �(�(B) ≥ 1; B̃) in Section 3). We
list them in this section, giving proofs when necessary.

For many discrete random variables it is easier to calculate the factorial moments than the actual
moments. As we shall see, the asymptotically dominant terms of the factorial moments of R are the same
as those of the usual moments. The following result is known (see, for example, Stirzaker [18, p. 156]).

Lemma 2.1 If X is a nonnegative, integer-valued random variable and p ≥ 1 then E[Xp] =∑∞
k=0 pk

p−1P (X > k).

(Here, and subsequently, we take 00 = 1.)

Lemmas 2.2, 2.3, 2.4, 2.5, 2.6, and 2.7 all involve binomial coefficient sums. The first three are known
results on alternating binomial transforms, valid for n ≥ 0 (see, for example, Spivey [17]). We give proofs
for the other three.

Lemma 2.2
n∑
k=0

(−1)k
(
n

k

)
=

{
1, n = 0,

0, otherwise.

Let
{
n
k

}
be a Stirling subset number (or Stirling number of the second kind).

Lemma 2.3 If p ≥ 1 then
n∑
k=0

(−1)k
(
n

k

)
kp =

{
p

n

}
(−1)nn!.

Lemma 2.4
n∑
k=0

(−1)k
(
n
k

)
k + 1

=
1

n+ 1
.

Lemma 2.5 For n ≥ m and p ≥ 0,
m∑
k=0

kp
(
m
k

)(
n
k

) =
p!mp(n+ 1)

(n+ p+ 1−m)p+1 .
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Proof. If m < p then both expressions are 0. Assume, then, that m ≥ p. Let

f(m,n, p) =

m∑
k=0

kp
(
m
k

)(
n
k

) ,

g(m,n, p) =
p!mp(n+ 1)

(n+ p+ 1−m)p+1 .

We show that f(m,n, p) and g(m,n, p) satisfy the same boundary conditions and recurrence and therefore

must be equal. First, the sum
∑m
k=0

(mk )
(nk)

is known to equal n+1
n+1−m [12, p. 174]. Thus f(m,n, 0) =

g(m,n, 0). Also, we have

f(m,n,m) =
mm

(
m
m

)(
n
m

) =
mmm!(n−m)!

n!
=
mmm!

nm
=
mmm!(n+ 1)

(n+ 1)m+1 = g(m,n,m).

Then, if n ≥ m ≥ p ≥ 1,

f(m,n, p) =

m∑
k=0

kp
(
m
k

)(
n
k

)
=

m∑
k=1

(k − 1)p−1(k − p+ p)mk
(
m−1
k−1

)
n
k

(
n−1
k−1

) [12, p. 174]

=
m

n

(
m∑
k=1

(k − 1)p
(
m−1
k−1

)(
n−1
k−1

) + p

m∑
k=1

(k − 1)p−1
(
m−1
k−1

)(
n−1
k−1

) )

=
m

n

(
m−1∑
k=0

kp
(
m−1
k

)(
n−1
k

) + p

m−1∑
k=0

kp−1
(
m−1
k

)(
n−1
k

) )
=
m

n
(f(m− 1, n− 1, p) + pf(m− 1, n− 1, p− 1)) .

Also,

g(m,n, p) =
p!mp(n+ 1)

(n+ p+ 1−m)p+1

= p!

(
(m− p)mp

(n+ p+ 1−m)p+1 +
(n+ p+ 1−m)mp

(n+ p+ 1−m)p+1

)
= p!

(
mp+1

(n+ p+ 1−m)p+1 +
mp

(n+ p−m)p

)
=
m

n

(
p!(m− 1)pn

(n+ p+ 1−m)p+1 +
p(p− 1)!(m− 1)p−1n

(n+ p−m)p

)
=
m

n
(g(m− 1, n− 1, p) + pg(m− 1, n− 1, p− 1)) .

□

Lemma 2.6 For n ≥ m and p ≥ 1,

p−1∑
k=0

(
p− 1

k

)
mp−1−k(n+ 1)

(n+ p− k −m)p−k
=

(n+ p)p

(n+ p−m)p
.

Proof.

p−1∑
k=0

(
p− 1

k

)
mp−1−k(n+ 1)

(n+ p− k −m)p−k
= (n+ 1)

p−1∑
k=0

(
p− 1

k

)
mp−1−k(n+ p−m)k

(n+ p−m)p

= (n+ 1)
(n+ p)p−1

(n+ p−m)p
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=
(n+ p)p

(n+ p−m)p
,

where the second-to-last step follows from the binomial theorem for falling factorial powers [12, p. 245].
□

Lemma 2.7 For p ≥ 1,

(p− 1)!

(n+ p)p
=

p∑
k=1

(−1)k−1
(
p−1
k−1

)
n+ k

Proof. Applying partial fractions decomposition to express the left-hand side as
∑p
k=1

ak
n+k we

obtain

ak =
(p− 1)!∏k−1

j=1 (−j)
∏p−k
j=1 j

= (−1)k−1 (p− 1)!

(k − 1)!(p− k)!

= (−1)k−1

(
p− 1

k − 1

)
.

□

The following result for falling factorial powers is well-known (see, for example, [12, p. 53]).

Lemma 2.8 If p ∕= −1,
b∑

k=a

kp =
(b+ 1)p+1

p+ 1
− ap+1

p+ 1
.

Let Hn =
∑n
k=1

1
k , the nth harmonic number. The asymptotic expression for Hn is also well-known

(see, for example, [12, p. 452]).

Lemma 2.9

Hn = log n+  +
1

2n
− 1

12n2
+O

(
1

n4

)
.

We then have the following.

Lemma 2.10
n∑

i1=1

n∑
i2=i1+1

⋅ ⋅ ⋅
n∑

ik=ik−1+1

1

i1i2 ⋅ ⋅ ⋅ ik
=

1

k!
(log n)k +



(k − 1)!
(log n)k−1 +O

(
(log n)k−2

)
.

Proof. Since there are k! ways to order i1, i2, . . . , ik, we have
n∑

i1=1

n∑
i2=i1+1

⋅ ⋅ ⋅
n∑

ik=ik−1+1

1

i1i2 ⋅ ⋅ ⋅ ik
=

1

k!

n∑
i1=1

n∑
i2=1,i2 ∕=i1

⋅ ⋅ ⋅
n∑

ik=1,ik ∕∈{i1,i2,...,ik−1}

1

i1i2 ⋅ ⋅ ⋅ ik
.

The expression on the right is bounded above by

1

k!

n∑
i1=1

n∑
i2=1

⋅ ⋅ ⋅
n∑

ik=1

1

i1i2 ⋅ ⋅ ⋅ ik
=

(Hn)k

k!

and below by

1

k!

n∑
i1=1

n∑
i2=1

⋅ ⋅ ⋅
n∑

ik=1

1

i1i2 ⋅ ⋅ ⋅ ik
−
(
k
2

)
k!

n∑
i1=1

n∑
i2=1

⋅ ⋅ ⋅
n∑

ik−2=1

n∑
ik−1=1

1

i1i2 ⋅ ⋅ ⋅ ik−2i2k−1

=
(Hn)k

k!
−O

(
(Hn)k−2

)
.

The result then follows from Lemma 2.9. □

We also need this result.
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Lemma 2.11 For p ≥ 1,

n∑
k=1

(log k)p

k
=

1

p+ 1
(log n)p+1 +O

(
(log n)p

n

)
.

Proof. By the Euler-Maclaurin summation formula [12, p. 474],

n∑
k=1

(log k)p

k
=

∫ n

1

(log x)p

x
dx+

(log n)p

2n
+

1

12

(
p(log n)p−1 − (log n)p

n2

)
+O

(
(log n)p

n2

)
=

1

p+ 1
(log n)p+1 +O

(
(log n)p

n

)
.

□

Finally, we require the following three asymptotic alternating sum values.

Lemma 2.12
n∑
k=1

(−1)k+1k = O (n) .

Proof. Because
∑n
k=1(−1)k+1k =

∑n−1
k=1(−1)k+1k+O(n), it suffices to prove the result for the case

when n is even. We have
∑n
k=1(−1)k+1k = (1− 2) + (3− 4) + ⋅ ⋅ ⋅+ (n− 1− n) = −n2 = O(n). □

Lemma 2.13
n∑
k=1

(−1)k+1 1

k
= log 2 +O

(
1

n

)
.

Proof. It is well-known that
∑∞
k=1(−1)k+1 1

k = log 2. Because this is an alternating series whose
terms decrease in absolute value, truncating it after the nth term produces an error no larger than the
order of that of the (n+ 1)th term. □

Lemma 2.14
n∑
k=1

(−1)k+1 log k

k
=

1

2
(log 2)2 −  log 2 +O

(
log n

n

)
.

Proof. As with Lemma 2.12, it suffices to prove the result for the case when n is even. We have

n∑
k=1

(−1)k+1 log k

k
=

n∑
k=1

log k

k
−

n/2∑
k=1

2 log(2k)

2k

=

n∑
k=1

log k

k
−

n/2∑
k=1

log k

k
−

n/2∑
k=1

log 2

k

=
1

2
(log n)2 +O

(
log n

n

)
− 1

2
(log(n/2))2 +O

(
log n

n

)
− log 2Hn/2,

by Lemma 2.11

=
1

2
(log n)2 − 1

2
(log n)2 + log 2 log n− 1

2
(log 2)2 +O

(
log n

n

)
− log 2

(
log(n/2) +  +O

(
1

n

))
,by Lemma 2.9

= log 2 log n− 1

2
(log 2)2 − log 2 (log n− log 2 + ) +O

(
log n

n

)
=

1

2
(log 2)2 −  log 2 +O

(
log n

n

)
.

□
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3. Moments for time to minimum degree 1. In this section we determine asymptotic results
for the moments of �(�(B) ≥ 1; B̃). We have the following:

Theorem 3.1

E
[
�p(�(B) ≥ 1; B̃)

]
=

⎧⎨⎩
n log n+ (log 2 + )n+O

(
n3/5(log n)2

)
, p = 1;

n2(log n)2 + 2(log 2 + )n2 log n

+
(
�(2) + 2 + 2 log 2− (log 2)2

)
n2 +O

(
n5/3(log n)2

)
, p = 2;

np(log n)p + p(log 2 + )np(log n)p−1 +O
(
np(log n)p−2

)
, p ≥ 3.

Instead of starting the derivation by working directly with E[�p(�(B) ≥ 1; B̃)] it turns out to be easier

to begin with E

[
p!
∑p−1
y=0

(p−1
y )

(p−y)!�
p−y(�(B) ≥ 1; B̃)

]
. The largest power of �p−y(�(B) ≥ 1; B̃) occurs when

y = 0, p!
(p−1
y )

(p−y)! = 1 when y = 0, and the largest term in �p(�(B) ≥ 1; B̃) is �p(�(B) ≥ 1; B̃). Thus the

dominant term in p!
∑p−1
y=0

(p−1
y )

(p−y)!�
p−y(�(B) ≥ 1; B̃) is �p(�(B) ≥ 1; B̃). As we shall see, both expressions

have the same dominant term asymptotically as well.

Proof. By Lemma 2.1,

E
[
�p(�(B) ≥ 1; B̃)

]
=

n2∑
m=0

pmp−1P
(
�(�(B) ≥ 1; B̃) > m

)
.

Let Bn,m be a graph chosen at random from the set of all bipartite graphs on V1 and V2 with ∣V1∣ =
∣V2∣ = n that contain exactly m edges. Because each random bipartite graph process is equally likely,
P (�(�(B) ≥ 1; B̃) > m) = P (�(Bn,m) = 0). Riordan and Stein [16] show that, for n ≥ 1, the number of
bipartite graphs with n vertices in each vertex set and m edges having minimum degree one is

n∑
i=0

n∑
j=0

(−1)i+j
(
n

i

)(
n

j

)(
ij

m

)
.

(If m = 0 and n ≥ 1, this expression evaluates to 0, which is of course correct.) As there are
(
n2

m

)
bipartite

graphs with n vertices in each vertex set and m edges, we have

P (�(Bn,m) = 0) = 1−
∑n
i=0

∑n
j=0(−1)i+j

(
n
i

)(
n
j

)(
ij
m

)(
n2

m

) .

Therefore,

p!

p−1∑
y=0

(
p−1
y

)
(p− y)!

E
[
�p−y(�(B) ≥ 1; B̃)

]

= p!

p−1∑
y=0

(
p−1
y

)
(p− y)!

n2∑
m=0

(p− y)mp−1−y

(
1−

∑n
i=0

∑n
j=0(−1)i+j

(
n
i

)(
n
j

)(
ij
m

)(
n2

m

) )

= p!

p−1∑
y=0

(
p−1
y

)
(p− y)!

n2∑
m=0

(p− y)mp−1−y (1)

− p!
p−1∑
y=0

(
p−1
y

)
(p− y)!

n2∑
m=0

(p− y)mp−1−y

(∑n
i=0

∑n
j=0(−1)i+j

(
n
i

)(
n
j

)(
ij
m

)(
n2

m

) )
. (2)

We now deal with Expressions (1) and (2) separately. Expression (1) is

p!

p−1∑
y=0

(
p−1
y

)
(p− y)!

n2∑
m=0

(p− y)mp−1−y = p!

p−1∑
y=0

(
p− 1

y

)
(n2 + 1)p−y

(p− y)!
, by Lemma 2.8

= p!

p−1∑
y=0

(
p− 1

y

)
(n2 + 1)!

(p− y)!(n2 + 1− p+ y)!
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= p!

p−1∑
y=0

(
p− 1

y

)(
n2 + 1

p− y

)

= p!

(
n2 + p

p

)
, by Vandermonde’s convolution [12, p. 174]

= (n2 + p)p. (3)

Expression (2) is

− p!
p−1∑
y=0

(
p−1
y

)
(p− y)!

n2∑
m=0

(p− y)mp−1−y

(∑n
i=0

∑n
j=0(−1)i+j

(
n
i

)(
n
j

)(
ij
m

)(
n2

m

) )

= −p!
n∑
i=0

n∑
j=0

(−1)i+j
(
n

i

)(
n

j

) p−1∑
y=0

(
p−1
y

)
(p− 1− y)!

n2∑
m=0

mp−1−y(ij
m

)(
n2

m

)
= −p!

n∑
i=0

n∑
j=0

(−1)i+j
(
n

i

)(
n

j

) p−1∑
y=0

(
p−1
y

)
(p− 1− y)!

(p− 1− y)!(ij)p−1−y(n2 + 1)

(n2 + p− y − ij)p−y
,

by Lemma 2.5

= −p!
n∑
i=0

n∑
j=0

(−1)i+j
(
n

i

)(
n

j

) p−1∑
y=0

(
p− 1

y

)
(ij)p−1−y(n2 + 1)

(n2 + p− y − ij)p−y

= −p!
n∑
i=0

n∑
j=0

(−1)i+j
(
n

i

)(
n

j

)
(n2 + p)p

(n2 + p− ij)p
, by Lemma 2.6

= −p(n2 + p)p
n∑
i=0

n∑
j=0

(−1)i+j
(
n

i

)(
n

j

)
(p− 1)!

(n2 + p− ij)p

= −p(n2 + p)p
n∑
i=0

n∑
j=0

(−1)i+j
(
n

i

)(
n

j

) p∑
q=1

(−1)q−1
(
p−1
q−1

)
n2 + q − ij

, by Lemma 2.7

= −p(n2 + p)p
p∑
q=1

(−1)q−1

(
p− 1

q − 1

) n∑
i=0

(−1)i
(
n

i

) n∑
j=0

(−1)j
(
n

j

)
1

n2 + q − ij

= −p(n2 + p)p
p∑
q=1

(−1)q−1

(
p− 1

q − 1

) n∑
i=1

(−1)i
(
n

i

) n∑
j=0

(−1)j
(
n

j

) − 1
i

−n2+q
i + j

,

by Lemma 2.2.

Let

f(n, q) =

n∑
i=1

(−1)i
(
n

i

) n∑
j=0

(−1)j
(
n

j

) − 1
i

−n2+q
i + j

.

We have

f(n, q) =

n∑
i=1

(−1)i
(
n

i

)
−n!

i

1

(−n2+q
i + n)n+1

, by Lemma 2.7

=

n∑
i=1

(−1)i
(
n

i

)
−n!

i

n∏
k=0

1

−n2+q
i + n− k

=
n!

n2 + q

n∑
i=1

(−1)i
(
n

i

) n−1∏
k=0

1

−n2+q
i + n− k

=
n!

n2 + q

n−1∑
i=0

(−1)n−i
(

n

n− i

) n−1∏
k=0

−1
n2+q
n−i − (n− k)
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=
n!

n2 + q

n−1∑
i=0

(−1)i
(
n

i

) n−1∏
k=0

1
n2+q
n−i − (n− k)

.

Now, let

Si =
n!

n2 + q

(
n

i

) n−1∏
k=0

1
n2+q
n−i − (n− k)

.

Claim 1. Si−1/Si > 1 for 1 ≤ i ≤ n− 1.

Proof. We have

Si−1

Si
=

(
n
i−1

)∏n−1
k=0

1
n2+q
n−i+1−(n−k)(

n
i

)∏n−1
k=0

1
n2+q
n−i −(n−k)

=
n! (n− i)! i!

(n− i+ 1)! (i− 1)!n!

n−1∏
k=0

n2+q
n−i − (n− k)
n2+q
n−i+1 − (n− k)

=
i

n− i+ 1

n−1∏
k=0

(
n2 + q − (n− k)(n− i)

)
(n− i+ 1)(

n2 + q − (n− k)(n− i+ 1)
)
(n− i)

.

Let

Tn,i,k =

(
n2 + q − (n− k)(n− i)

)
(n− i+ 1)(

n2 + q − (n− k)(n− i+ 1)
)
(n− i)

.

We claim Tn,i,k >
k+i+q/n
k+i−1+q/n . We have

Tn,i,k =
(k + i)n2 + (k + i+ q − 2ik − i2)n+ i2k − iq − ik + q

(k + i− 1)n2 + (k + i+ q − 2ik − i2)n+ i2k − iq − ik
.

Now, let g(n, i, k) = (k + i − 2ik − i2)n + i2k − iq − ik. The expression g(n, i, k) appears in both
the numerator and the denominator of Tn,i,k and is clearly negative. Because (k + i)n2 + qn + q >
(k+ i−1)n2 + qn, and adding the same negative number to the numerator and denominator of a fraction
greater than 1 increases its value (provided both numerator and denominator remain positive), we have

Tn,i,k >
(k + i)n2 + qn+ q

(k + i− 1)n2 + qn
=

k + i+ q/n

k + i− 1 + q/n
+

q

(k + i− 1)n2 + qn
>

k + i+ q/n

k + i− 1 + q/n
.

Therefore,

Si−1

Si
>

i

n− i+ 1

n−1∏
k=0

k + i+ q/n

k + i− 1 + q/n
=

i

n− i+ 1

n+ i− 1 + q/n

i− 1 + q/n
> 1.

□

Since we have an alternating sum in our expression for f(n, q), Claim 1 implies that, for any k ≥ 0,

2k+1∑
i=0

(−1)iSi ≤ f(n, q) ≤
2k∑
i=0

(−1)iSi.

To obtain a more precise estimate for f(n, q) we now take a closer look at the Si’s.

Si =
n!

n2 + q

(
n

i

) n−1∏
k=0

1
n2+q
n−i − (n− k)

=
Γ(n+ 1)n!

(n2 + q)i! (n− i)!

n−1∏
k=0

1

i+ i2+q
n−i + k

=
n! Γ(n+ 1)Γ

(
i+ i2+q

n−i

)
(n2 + q)i! (n− i)! Γ

(
n+ i+ i2+q

n−i

) . (4)
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Alternatively, we can express Si in terms of the Beta function B(x, y):

Si =
n

n2 + q

(
n

i

)
B

(
n, i+

i2 + q

n− i

)
=

n

n2 + q

(
n

i

)
B

(
n,
ni+ q

n− i

)
.

For i = 0 Expression (4) simplifies to

S0 =
Γ(n+ 1)Γ

(
q
n

)
(n2 + q)Γ

(
n+ q

n

) =
nΓ(n)Γ

(
1 + q

n

) (
n+ q

n

)
(n2 + q) qnΓ

(
n+ 1 + q

n

) =
nΓ(n)Γ

(
1 + q

n

)
qΓ
(
n+ 1 + q

n

) ,
or, in terms of the Beta function,

S0 =
n

q
B
(
n, 1 +

q

n

)
.

We now obtain an asymptotic expression for S0. With Lemmas 2.2, 2.3, and 2.4 in mind, we need to
track the highest-order term for each power of q. We have

nΓ(n)

q Γ
(
n+ 1 + q

n

) =
n

q
n−1−q/n

(
1 +O

(
1

n4

)
− q

2n2
+ q O

(
1

n3

)
+

∞∑
k=2

qk O

(
1

nk+1

))
,

[1, p. 257, Expression 6.1.47]

=
e−q/n logn

q

(
1 +O

(
1

n4

)
− q

2n2
+ q O

(
1

n3

)
+

∞∑
k=2

qk O

(
1

nk+1

))

=
1

q

(
1− q log n

n
+
q2(log n)2

2n2
+

∞∑
k=3

(−1)k
qk(log n)k

k!nk

)
×(

1 +O

(
1

n4

)
− q

2n2
+ q O

(
1

n3

)
+

∞∑
k=2

qk O

(
1

nk+1

))

=
1

q
+

1

q
O

(
1

n4

)
− log n

n
+O

(
1

n2

)
+
q(log n)2

2n2
+ q O

(
log n

n3

)
+

∞∑
k=2

qk
(

(−1)k+1(log n)k+1

(k + 1)!nk+1
+O

(
(log n)k

nk+2

))
.

In addition,

Γ
(

1 +
q

n

)
= 1− q

n
+

(�(2) + 2)q2

2n2
+

∞∑
k=3

qk O

(
1

nk

)
. [11, p. 935, Expression 8.321]

Thus we have

S0 =
1

q
+

1

q
O

(
1

n4

)
− log n

n
− 

n
+O

(
1

n2

)
+
q(log n)2

2n2
+
q log n

n2
+

(�(2) + 2)q

2n2

+ q O

(
log n

n3

)
+

∞∑
k=2

qk
(

(−1)k+1(log n)k+1

(k + 1)!nk+1
+

(−1)k+1(log n)k

k!nk+1
+O

(
(log n)k−1

nk+1

))
.

Therefore, by Lemmas 2.2, 2.3, and 2.4, and the fact that
{
n
n

}
= 1 and

{
p
n

}
= 0 for p < n,

p∑
q=1

(−1)q−1

(
p− 1

q − 1

)
S0 =

⎧⎨⎩
1− logn

n − 
n +O

(
(logn)2

n2

)
, p = 1;

1
2 −

(logn)2

2n2 −  logn
n2 − �(2)+2

2n2 +O
(

(logn)3

n3

)
, p = 2;

1
p −

(logn)p

p np − (logn)p−1

np +O
(

(logn)p−2

np

)
, p ≥ 3.

(5)

We now consider, in parts, our expression (4) for Si when i ≥ 1 and i = o(n1/2). (We require

i = o(n1/2) so that i2+q
n−i = o(1).) First, we have

Γ
(
i+ i2+q

n−i

)
i!

=
1

i

(
i−1∏
k=1

k + i2+q
n−i
k

)
Γ

(
1 +

i2 + q

n− i

)
.
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Now (see [11, p. 935, Expression 8.321]),

Γ

(
1 +

i2 + q

n− i

)
= 1− (i2 + q)

n− i
+O

(
i4

n2

)
+ q O

(
i2

n2

)
+

∞∑
k=2

qkO

(
1

nk

)
In addition,

i−1∏
k=1

k + i2+q
n−i
k

=

i−1∏
k=1

(
1 +

i2 + q

k(n− i)

)
= 1 +

(
i2 + q

n− i

)
Hi−1 +O

(
i4(log i)2

n2

)
+ q O

(
i2(log i)2

n2

)
+

i−1∑
k=2

qk
(

1

k!

(log i)k

nk
+



(k − 1)!

(log i)k−1

nk
+O

(
(log i)k−2

nk

))
,

by Lemma 2.10.

Therefore, by Lemma 2.9 we have

Γ
(
i+ i2+q

n−i

)
i!

=
1

i
+

i2 + q

i(n− i)
log i+O

(
i3(log i)2

n2

)
+ q O

(
i(log i)2

n2

)
+

i−1∑
k=2

qk
(

1

k!

(log i)k

ink
+O

(
(log i)k−2

ink

))
+ qi

(
−
i!

(log i)i−1

ni
+O

(
(log i)i−2

i!ni

))
+

∞∑
k=i+1

qkO

(
(log i)k−2

ink

)

=
1

i
+
i log i

n
+O

(
i3(log i)2

n2

)
+ q

(
log i

in
+O

(
i(log i)2

n2

))
+

i−1∑
k=2

qk
(

1

k!

(log i)k

ink
+O

(
(log i)k−2

ink

))
+ qi

(
−
i!

(log i)i−1

ni
+O

(
(log i)i−2

i!ni

))
+

∞∑
k=i+1

qkO

(
(log i)k−2

ink

)
. (6)

Taking the rest of Expression (4), we have

Γ(n+ 1)n!

(n2 + q)Γ
(
n+ i+ i2+q

n−i

)
(n− i)!

=
Γ(n+ 1)

∏n
k=n−i+1 k

(n2 + q)Γ
(
n+ 1 + i2+q

n−i

)∏n+i−1
k=n+1

(
k + i2+q

n−i

) .
The ratio of gamma functions is (see, for example, [1, p. 257, Expression 6.1.47])

Γ(n+ 1)

Γ
(
n+ 1 + i2+q

n−i

)
= n−(i2+q)/(n−i)

(
1− i2

2n2
+O

(
i4

n3

)
+ q

(
− 1

2n2
+O

(
i2

n3

))
+

∞∑
k=2

qk O

(
1

nk+1

))
,

and

n−(i2+q)/(n−i) = exp

(
− i

2 + q

n− i
log n

)
= 1− i2 log n

n
+O

(
i4(log n)2

n2

)
+ q

(
− log n

n
+O

(
i2(log n)2

n2

))
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+

∞∑
k=2

qk
(

(−1)k

k!

(log n)k

nk
+O

(
i2(log n)k+1

nk+1

))
.

Therefore,

Γ(n+ 1)

Γ
(
n+ 1 + i2+q

n−i

) = 1− i2 log n

n
+O

(
i4(log n)2

n2

)
+ q

(
− log n

n
+O

(
i2(log n)2

n2

))

+

∞∑
k=2

qk
(

(−1)k

k!

(log n)k

nk
+O

(
i2(log n)k+1

nk+1

))
. (7)

We also have ∏n
k=n−i+1 k

(n2 + q)
∏n+i−1
k=n+1

(
k + i2+q

n−i

) =
n

n2 + q

i−1∏
j=1

n+ j − i
n+ j + i2+q

n−i

=
n

n2 + q

i−1∏
j=1

1− i
n+j

1 + i2+q
(n+j)(n−i)

.

Now,

i2 + q

(n+ j)(n− i)
=
i2 + q

n2

(
1

1 + j
n

)(
1

1− i
n

)

=
i2 + q

n2

(
1− j

n
+O

(
j2

n2

))(
1 +

i

n
+O

(
i2

n2

))
=

i2

n2
+O

(
i3

n3

)
+ qO

(
1

n2

)
.

Thus

1

1 + i2+q
(n+j)(n−i)

= 1− i2

n2
+O

(
i3

n3

)
+

∞∑
k=1

qkO

(
1

n2k

)
.

In addition,

1− i

n+ j
= 1−

i
n

1 + j
n

= 1− i

n

(
1− j

n
+O

(
j2

n2

))
= 1− i

n
+O

(
i2

n2

)
.

Therefore,
1− i

n+j

1 + i2+q
(n+j)(n−i)

= 1− i

n
+O

(
i2

n2

)
+

∞∑
k=1

qkO

(
1

n2k

)
.

This implies
i−1∏
j=1

1− i
n+j

1 + i2+q
(n+j)(n−i)

= 1− i(i− 1)

n
+O

(
i4

n2

)
+

∞∑
k=1

qkO

(
ik

n2k

)
.

Then, since

n

n2 + q
=

1

n

(
1

1 + q
n2

)
=

1

n

(
1 +

∞∑
k=1

qk
(−1)k

n2k

)
,

we have

n

n2 + q

i−1∏
j=1

1− i
n+j

1 + i2+q
(n+j)(n−i)

=
1

n

(
1− i(i− 1)

n
+O

(
i4

n2

)
+

∞∑
k=1

qkO

(
ik

n2k

))
. (8)

Then, putting Expressions (6), (7), and (8) together, we have, for i ≥ 1,

Si =
1

in
+
i log i

n2
− i log n

n2
− i− 1

n2
+O

(
i3(log n)2

n3

)
+ q

(
log i

in2
− log n

in2
+O

(
i(log n)2

n3

))
+

i−1∑
k=2

qk

[
(−1)k(log n)k

k! ink+1
+

k∑
j=1

(−1)k−j(log i)j(log n)k−j

j!(k − j)! ink+1
+O

(
(log n)k−2

ink+1

)]
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+

∞∑
k=i,
i>1

qk

[
(−1)k(log n)k

k! ink+1
+

i−1∑
j=1

(−1)k−j(log i)j(log n)k−j

j!(k − j)! ink+1

+
(−1)k−i+1(log i)i−1(log n)k−i

i!(k − i)!nk+1
+O

(
(log n)k−2

ink+1

)]
.

Therefore, by Lemmas 2.12, 2.13, and 2.14, and the fact that
∑∞
i=1(−1)i (log i)k

i converges (e.g., by the
alternating series test), we have, for any fixed � < 1/2,

n�∑
i=1

(−1)iSi =− log 2

n
+O

(
1

n1+�

)
+O

(
log n

n2−�

)
+O

(
(log n)2

n3−4�

)
+ q

(
− (log 2)2

2n2
+
 log 2

n2
+O

(
log n

n2+�

)
+

log 2 log n

n2
+O

(
log n

n2+�

)
+O

(
(log n)2

n3−2�

))
+

∞∑
k=2

qk
(

(−1)k+1 log 2(log n)k

k!nk+1
+O

(
(log n)k−1

nk+1

))
.

We then have, taking � = 2/5 for p = 1 and � = 1/3 for p = 2, together with Lemmas 2.2 and 2.3
and our result (5) for S0,

p∑
q=1

(−1)q−1

(
p− 1

q − 1

) n�∑
i=0

(−1)iSi

=

⎧⎨⎩
1− logn

n − log 2+
n +O

(
(logn)2

n7/5

)
, p = 1;

1
2 −

(logn)2

2n2 − (log 2+) logn
n2 − �(2)+2+2 log 2−(log 2)2

2n2 +O
(

(logn)2

n7/3

)
, p = 2;

1
p −

(logn)p

p np − (log 2+)(logn)p−1

np +O
(

(logn)p−2

np

)
, p ≥ 3.

Multiplying this expression by −p(n2 + p)p and adding the result to Expression (3), we have

p!

p−1∑
y=0

(
p−1
y

)
(p− y)!

E
[
�p−y(�(B) ≥ 1; B̃)

]

=

⎧⎨⎩
n log n+ (log 2 + )n+O

(
n3/5(log n)2

)
, p = 1;

n2(log n)2 + 2(log 2 + )n2 log n

+
(
�(2) + 2 + 2 log 2− (log 2)2

)
n2 +O

(
n5/3(log n)2

)
, p = 2;

np(log n)p + p(log 2 + )np(log n)p−1 +O
(
np(log n)p−2

)
, p ≥ 3.

As �p(�(B) ≥ 1; B̃) is the highest-powered term in p!
∑p−1
y=0

(p−1
y )

(p−y)!�
p−y(�(B) ≥ 1; B̃), the next highest-

powered term is of degree p − 1, and the Big-Oh error term for E
[
�p(�(B) ≥ 1; B̃)

]
is larger than the

largest term for E
[
�p−1(�(B) ≥ 1; B̃)

]
, the theorem follows. □

A few additional comments:

(i) Theorem 3.1 implies

V ar
(
�(�(B) ≥ 1; B̃)

)
= n2(log n)2 + 2(log 2 + )n2 log n+

(
�(2) + 2 + 2 log 2− (log 2)2

)
n2 +O

(
n5/3(log n)2

)
− n2(log n)2 − 2(log 2 + )n2 log n− (log 2 + )2n2 +O

(
n8/5(log n)3

)
=
(
�(2)− 2(log 2)2

)
n2 +O

(
n5/3(log n)2

)
.

(ii) Numerical work indicates that, for small n (n ≤ 1500), (n2 + 1)
(
1− nB

(
n, 1 + 1

n

))
+ (log 2)n−

log n (the estimate using the exact value for S0 and the dominant term for
∑

(−1)iSi less log n)
has error less than 1 when used to approximate E[�(�(B) ≥ 1; B̃)].
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(iii) There is another expression for f(n, q) that is perhaps of interest. We have

f(n, q) =

n∑
i=0

n∑
j=0

(−1)i+j
(
n

i

)(
n

j

)
1

n2 + q − ij

=
1

n2 + q

n∑
i=0

n∑
j=0

(−1)i+j
(
n

i

)(
n

j

)
1

1− ij
n2+q

=
1

n2 + q

n∑
i=0

n∑
j=0

(−1)i+j
(
n

i

)(
n

j

) ∞∑
k=0

(
ij

n2 + q

)k
(as ij < n2 + q)

=

∞∑
k=0

(
1

n2 + q

)k+1 n∑
i=0

(−1)i
(
n

i

)
ik

n∑
j=0

(−1)j
(
n

j

)
jk

=

∞∑
k=0

(
1

n2 + q

)k+1(
(−1)n

{
k

n

}
n!

)(
(−1)n

{
k

n

}
n!

)
, by Lemma 2.3

= n!2
∞∑
k=n

(
1

n2 + q

)k+1{
k

n

}2

.

The convergence of this infinite sum is fairly slow, however, and thus is not as helpful as the
alternating sum we use in obtaining an asymptotic expression for f(n, q).

4. Moments for time to first matching. We now determine asymptotic expressions for the mo-
ments of �(match; B̃). These turn out to be the same as those for �(�(B) ≥ 1; B̃) obtained in Section 3.

Theorem 4.1

E
[
�p(match; B̃)

]
=

⎧⎨⎩
n log n+ (log 2 + )n+O

(
n3/5(log n)2

)
, p = 1;

n2(log n)2 + 2(log 2 + )n2 log n

+
(
�(2) + 2 + 2 log 2− (log 2)2

)
n2 +O

(
n5/3(log n)2

)
, p = 2;

np(log n)p + p(log 2 + )np(log n)p−1 +O
(
np(log n)p−2

)
, p ≥ 3.

Proof. As in the proof of Theorem 3.1, let Bn,m be a graph chosen at random from the set of all
bipartite graphs on V1 and V2 with ∣V1∣ = ∣V2∣ = n that contain exactly m edges. Lemma 2.1 implies

E[�p(match; B̃)] =

n2∑
m=0

pmp−1P (�(match; B̃) > m)

=

n2∑
m=0

pmp−1P (Bn,m has no matching)

=

n2∑
m=0

pmp−1P (Bn,m has no matching and �(Bn,m) = 0)

+

n2∑
m=0

pmp−1P (Bn,m has no matching and �(Bn,m) ≥ 1)

=

n2∑
m=0

pmp−1P (�(Bn,m) = 0)

+

n2∑
m=0

pmp−1P (Bn,m has no matching and �(Bn,m) ≥ 1).

Theorem 3.1 gives us an expression for the first sum, which is equal to E
[
�p(�(B) ≥ 1; B̃)

]
. As we shall

see, this sum dominates the second sum asymptotically. We split the second sum into three pieces. As
m increases from 0 to n2, the event �(Bn,m) ≥ 1 becomes much more likely once m ≈ 1

2n log n [3, p. 77],
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and the event that Bn,m has no matching becomes much less likely once m ≈ n log n [8]. Splitting the
sum near these two places thus turns out to be helpful.

Claim 1. For 0 ≤ k ≤ 1,
∑⌊n(1−k) logn⌋
m=0 pmp−1P (Bn,m has no matching and �(Bn,m) ≥ 1) =

O(np−2k(log n)p−1).

Proof. If v ∈ V1 then, for fixed m, P (�(v) = 0) is the probability that all m of the actual edges in
Bn,m are distributed among the n2 − n potential edges that are not incident on v. Thus we have

P (�(v) = 0) =

(
n2−n
m

)(
n2

m

) =
(n2 − n)!(n2 −m)!

n2!(n2 − n−m)!

=
(n2 −m)(n2 −m− 1) ⋅ ⋅ ⋅ (n2 −m− n+ 1)

n2(n2 − 1) ⋅ ⋅ ⋅ (n2 − n+ 1)

=
(

1− m

n2

)(
1− m

n2 − 1

)
⋅ ⋅ ⋅
(

1− m

n2 − n+ 1

)
≥
(

1− m

n2 − n+ 1

)n
.

Therefore,

P (Bn,m has no matching and �(Bn,m) ≥ 1)

≤ P (�(Bn,m) ≥ 1)

≤ P (�(v1) ≥ 1, �(v2) ≥ 1, . . . , �(vn) ≥ 1), where V1 = {v1, v2, . . . , vn}
= P (�(v1) ≥ 1)P (�(v2) ≥ 1∣�(v1) ≥ 1) ⋅ ⋅ ⋅P (�(vn) ≥ 1∣�(v1) ≥ 1, �(v2) ≥ 1, . . . , �(vn−1) ≥ 1)

≤ P (�(v1) ≥ 1)P (�(v2) ≥ 1) ⋅ ⋅ ⋅P (�(vn) ≥ 1)

≤
(

1−
(

1− m

n2 − n+ 1

)n)n
.

Let m = n log n− cn, 0 ≤ c ≤ log n. Then

P (�(Bn,m) ≥ 1) ≤
(

1−
(

1− n log n− cn
n2 − n+ 1

)n)n
.

Of course, the dominant term in n2 − n+ 1 is n2, and we know that, as n→∞,

(1− n logn−cn
n2 )n

e− logn+c
→ 1.

For the range of values of n and c we consider, it is not too hard to show that (1− n logn−cn
n2−n+1 )n is never

very different from e− logn+c, and, in fact, for 0 ≤ c ≤ log n, n ≥ 1,(
1− n log n− cn

n2 − n+ 1

)n
≥ 0.43e− logn+c =

0.43ec

n
,

with the minimum value of
(1− n logn−cn

n2−n+1 )n

e− logn+c

occurring when c = 0 and n = 4. Therefore, if m = n log n− cn, then

P (�(Bn,m) ≥ 1) ≤
(

1− 0.43ec

n

)n
≤ e−0.43ec .

Thus we have

⌊n(1−k) logn⌋∑
m=0

pmp−1P (Bn,m has no matching and �(Bn,m) ≥ 1)

≤ p(n log n)p−1

⌊n(1−k) logn⌋∑
m=0

P (�(Bn,m) ≥ 1)
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≤ p(n log n)p−1

⌈logn⌉∑
c=⌊k logn⌋

⌊n logn⌋−cn∑
m=⌊n logn⌋−(c+1)n+1

P (�(Bn,m) ≥ 1)

≤ p(n log n)p−1

⌈logn⌉∑
c=⌊k logn⌋

⌊n logn⌋−cn∑
m=⌊n logn⌋−(c+1)n+1

P (�(Bn,⌊n logn⌋−cn) ≥ 1)

≤ p(n log n)p−1

⌈logn⌉∑
c=⌊k logn⌋

⌊n logn⌋−cn∑
m=⌊n logn⌋−(c+1)n+1

e−0.43ec

= pn(n log n)p−1

⌈logn⌉∑
c=⌊k logn⌋

e−0.43ec

≤ pn(n log n)p−1
∞∑

c=⌊k logn⌋

e−0.43ec

≤ pn(n log n)p−1
∞∑

j=−1

e−0.43nkej

≤ pn(n log n)p−1

⎛⎝e−(0.43/e)nk +

∞∑
j=1

e−0.43nkj

⎞⎠ , as ej ≥ j + 1

= pn(n log n)p−1

(
e−(0.43/e)nk +

e−0.43nk

1− e−0.43nk

)

< pn(n log n)p−1

(
e2

(0.43)2n2k
+

1

(0.43)2n2k − 1

)
, as e−x <

1

x2
for x > 0

= O(np−2k(log n)p−1).

□

Claim 2. For 0 ≤ k < 1
2 ,
∑⌊n logn⌋
m=⌈n(1−k) logn⌉ pm

p−1P (Bn,m has no matching and �(Bn,m) ≥ 1) =

O
(
np+2k−1(log n)p−1

)
.

Proof. Suppose m = n
2 log n+ cn, where 0 < c ≤ 1

2 log n. Frieze [9] shows that

P (Bn,m has no matching∣�(Bn,m) ≥ 1) ≤ O
(
e−2c + n−1/2−3c/ logn

)
.

Thus
P (Bn,m has no matching∣�(Bn,m) ≥ 1) = O

(
e−2c + n−1/2e−3c

)
= O(e−2c),

as n1/ logn = e and c > 0.

Since

P (Bn,m has no matching and �(Bn,m) ≥ 1)

= P (Bn,m has no matching∣�(Bn,m) ≥ 1)P (�(Bn,m) ≥ 1)

≤ P (Bn,m has no matching∣�(Bn,m) ≥ 1),

we have

⌊n logn⌋∑
m=⌈n(1−k) logn⌉

pmp−1P (Bn,m has no matching and �(Bn,m) ≥ 1)

≤ p(n log n)p−1

⌊n logn⌋∑
m=⌈n(1−k) logn⌉

P (Bn,m has no matching∣�(Bn,m) ≥ 1)

≤ p(n log n)p−1

⌈ 12 logn⌉∑
c=⌊( 1

2−k) logn⌋

⌊n2 logn⌋+(c+1)n−1∑
m=⌊n2 logn⌋+cn

P (Bn,m has no matching∣�(Bn,m) ≥ 1)
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≤ p(n log n)p−1

⌈ 12 logn⌉∑
c=⌊( 1

2−k) logn⌋

⌊n2 logn⌋+(c+1)n−1∑
m=⌊n2 logn⌋+cn

O(e−2c)

= pn(n log n)p−1

⌈ 12 logn⌉∑
c=⌊( 1

2−k) logn⌋

O(e−2c)

≤ pn(n log n)p−1

⌈ 12 logn⌉∑
c=⌊( 1

2−k) logn⌋

Ke−2c, for some constant K

≤ pn(n log n)p−1
∞∑

c=⌊( 1
2−k) logn⌋

Ke−2c

≤ Kpn(n log n)p−1

⎛⎝e(−1+2k) logn
∞∑

j=−1

e−2j

⎞⎠
= n(n log n)p−1n2k−1O(1)

= O
(
np+2k−1(log n)p−1

)
.

□

Claim 3.
∑n2

m=⌈n logn⌉ pm
p−1P (Bn,m has no matching and �(Bn,m) ≥ 1) = O

(
np−1/2(log n)p+1

)
.

Proof. Erdős and Rényi [8] prove that, for m = n log n+ cn+ o(n),

P (Bn,m has no matching and �(Bn,m) ≥ 1) ≤ A(log n)2

√
n−A(log n)2

, (9)

where A is a positive constant depending only on c. Holding A fixed and summing this result as m
ranges from n log n to n2 yields an expression on the order of n

√
n(log n)2, which is larger than we want.

However, we still use the approach of Erdős and Rényi: The dependence of A upon c, which they do not
need for their result, turns out to be crucial for ours. We also fill in some details not provided in their
paper.

As with Erdős and Rényi, define Qk(n,m) to be the probability that there can be found k rows and
n − k − 1 columns or k columns and n − k − 1 rows that contain all the ones in the adjacency matrix
representation of Bn,m, and k is the least number with this property. Then, by the theorem of Frobenius
and Kőnig (see, for example, Minc and Marcus [14, p. 31]), P (Bn,m has no matching and �(Bn,m) ≥
1) =

∑⌊n−1
2 ⌋

k=1 Qk(n,m).

Erdős and Rényi show that

Qk(n,m) ≤ 2

(
n

k

)(
n

k + 1

)(
k + 1

2

)k (n(n−k−1)+k(k−1)
m−2k

)(
n2

m

) . (10)

However, two lines later they arrive at Expression (9). We need the intermediate steps in this calculation.

First, we upper-bound the binomial expression in Expression (10).(
n(n−k−1)+k(k−1)

m−2k

)(
n2

m

)
=

(n2 − kn− n+ k2 − k)!m! (n2 −m)!

(m− 2k)! (n2 − kn− n+ k2 + k −m)!n2!

=
(n2 −m)(n2 −m− 1) ⋅ ⋅ ⋅ (n2 −m− kn− n+ k2 + k + 1)

n2(n2 − 1) ⋅ ⋅ ⋅ (n2 − kn− n+ k2 + k + 1)
×

m(m− 1) ⋅ ⋅ ⋅ (m− 2k + 1)

(n2 − kn− n+ k2 + k) ⋅ ⋅ ⋅ (n2 − kn− n+ k2 − k + 1)

=
(

1− m

n2

)(
1− m

n2 − 1

)
⋅ ⋅ ⋅
(

1− m

n2 − kn− n+ k2 + k + 1

)
×
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(
m

n2 − kn− n+ k2 + k

)
⋅ ⋅ ⋅
(

m− 2k + 1

n2 − kn− n+ k2 − k + 1

)
≤
(

1− m

n2

)kn+n−k2−k
(

m

n2 − kn− n+ k2 + k

)2k

.

Now, n2− kn−n+ k2 + k is minimized when k = n−1
2 . The minimum value is 3n2/4−n/2− 1/4, which,

for n ≥ 36, is larger than 2n2/e. Thus, for sufficiently large n we have(
n(n−k−1)+k(k−1)

m−2k

)(
n2

m

) ≤
(

1− m

n2

)kn+n−k2−k ( em
2n2

)2k

=
(e

2

)2k (
1− m

n2

)(k+1)(n−k) (m
n2

)2k

. (11)

We now show that if m = n log n+ cn+ r, 0 ≤ c ≤ n− log n, 0 ≤ r < n, 1 ≤ k ≤ ⌊n−1
2 ⌋,

Qk(n,m) ≤ e1−c/2
(
e4−c/2

8
√
n

(
log n+ c+

r

n

)2
)k

.

Case 1. k ≤ n
2 − 1.

For this case, (k+1)(n−k) ≥ k(n2 +1)+n−k = n(k2 +1). Then, since
(
n
k

)
≤ (nek )k, by Expressions (10)

and (11) we have

Qk(n,m) ≤ 2
(ne
k

)k ( ne

k + 1

)k+1(
k(k + 1)

2

)k (e
2

)2k ((
1− m

n2

)n)k/2+1 (m
n2

)2k

=
e4k+1n

23k−1(k + 1)

((
1− m

n2

)n)k/2+1 (m
n

)2k

≤ e4k+1n

23k−1(k + 1)

(
e−m/n

)k/2+1 (m
n

)2k

=
2en

k + 1
e−m/n

(
e4m2

8n2
e−m/(2n)

)k
.

For m = n log n+ cn+ r, we have

Qk(n,m) ≤ 2en

k + 1

(
e− logn−c−r/n

)(e4

8

(
log n+ c+

r

n

)2 (
e− logn−c−r/n

)1/2
)k

=
2

k + 1
e1−c−r/n

(
1

8
√
n
e4−c/2−r/(2n)

(
log n+ c+

r

n

)2
)k

≤ e1−c/2
(
e4−c/2

8
√
n

(
log n+ c+

r

n

)2
)k

.

Case 2. k = n
2 −

1
2 .

Here, k + 1 = n
2 + 1

2 , and so
(
n
k+1

)
=
(
n
k

)
. Also, (k + 1)(n − k) ≥ (k + 1)n+1

2 ≥ n
2 (k + 1). Thus we

have, by Expressions (10) and (11),

Qk(n,m) ≤ 2
(ne
k

)k (ne
k

)k (k(k + 1)

2

)k (e
2

)2k ((
1− m

n2

)n)(k+1)/2 (m
n2

)2k

=
e4k

23k−1

(
1 +

1

k

)k ((
1− m

n2

)n)(k+1)/2 (m
n

)2k

≤ e4k+1

23k−1

(
e−m/(2n)

)k+1 (m
n

)2k

= 2e1−m/(2n)

(
e4m2

8n2
e−m/(2n)

)k
.
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For m = n log n+ cn+ r, n ≥ 4, we have

Qk(n,m) ≤ 2e
(
e− logn−c−r/n

)1/2
(
e4

8

(
log n+ c+

r

n

)2 (
e− logn−c−r/n

)1/2
)k

=
2√
n
e1−c/2−r/(2n)

(
1

8
√
n
e4−c/2−r/(2n)

(
log n+ c+

r

n

)2
)k

≤ e1−c/2
(
e4−c/2

8
√
n

(
log n+ c+

r

n

)2
)k

.

Now, there exists N such that for any n ≥ N and any c ≥ 0, 0 ≤ r < n,

e4−c/2

8
√
n

(
log n+ c+

r

n

)2

<
1

2
.

Therefore, for m = n log n+ cn+ r, 0 ≤ c ≤ n− log n, 0 ≤ r < n, and n ≥ N we have

⌊n−1
2 ⌋∑

k=1

Qk(n,m) ≤
⌊n−1

2 ⌋∑
k=1

e1−c/2
(
e4−c/2

8
√
n

(
log n+ c+

r

n

)2
)k

≤
∞∑
k=1

e1−c/2
(
e4−c/2

8
√
n

(
log n+ c+

r

n

)2
)k

= e1−c/2
e4−c/2

8
√
n

(
log n+ c+ r

n

)2
1− e4−c/2

8
√
n

(
log n+ c+ r

n

)2
≤ e1−c/2

e4−c/2

8
√
n

(
log n+ c+ r

n

)2
1− 1

2

=
e5−c

4
√
n

(
log n+ c+

r

n

)2

.

Thus, for n ≥ N ,

n2∑
m=⌈n logn⌉

pmp−1P (Bn,m has no matching and �(Bn,m) ≥ 1)

≤
⌈n−logn⌉∑

c=0

⌈n logn⌉+(c+1)n−1∑
m=⌈n logn⌉+cn

pmp−1P (Bn,m has no matching and �(Bn,m) ≥ 1)

= p

⌈n−logn⌉∑
c=0

n−1∑
r=0

(⌈n log n⌉+ cn+ r)
p−1×

P (Bn,⌈n logn⌉+cn+r has no matching and �(Bn,⌈n logn⌉+cn+r) ≥ 1)

≤ p
⌈n−logn⌉∑

c=0

n−1∑
r=0

(n log n+ (c+ 1)n)
p−1 e

5−c

4
√
n

(
log n+ c+

r + 1

n

)2

≤ p
∞∑
c=0

n−1∑
r=0

(n log n+ (c+ 1)n)
p−1 e

5−c

4
√
n

(log n+ c+ 1)
2

≤ pn
∞∑
c=0

(n log n+ (c+ 1)n)
p−1 e

5−c

4
√
n

(log n+ c+ 1)
2

= O
(
np−1/2(log n)p+1

)
.

This completes the proof of Claim 3. □
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Taking k = 1/4 in Claims 1 and 2, and combining them with Claim 3, we have

n2∑
m=0

pmp−1P (Bn,m has no matching and �(Bn,m) ≥ 1) = O
(
np−1/2(log n)p+1

)
.

Combining this result with that obtained in Theorem 3.1 proves that

E
[
�p(match; B̃)

]
=

⎧⎨⎩
n log n+ (log 2 + )n+O

(
n3/5(log n)2

)
, p = 1;

n2(log n)2 + 2(log 2 + )n2 log n

+
(
�(2) + 2 + 2 log 2− (log 2)2

)
n2 +O

(
n5/3(log n)2

)
, p = 2;

np(log n)p + p(log 2 + )np(log n)p−1 +O
(
np(log n)p−2

)
, p ≥ 3.

As �p(match; B̃) is the highest-powered term in �p(match; B̃), the next highest-powered term is of

degree p − 1, and the Big-Oh error term for E
[
�p(match; B̃)

]
is larger than the largest term for

E
[
�p−1(match; B̃)

]
, the theorem follows. □

Theorem 4.1 implies V ar
(
�(match; B̃)

)
=
(
�(2)− 2(log 2)2

)
n2 + O

(
n5/3(log n)2

)
, just as with

V ar
(
�(�(B) ≥ 1; B̃)

)
.

5. Moments for the bottleneck assignment problem. We now apply the results obtained in
Theorem 4.1 for the moments of �(match; B̃) to give a method for determining moments for certain
random bottleneck assignment problems.

Let R denote the rank of the optimal cost c∗n of an n × n bottleneck assignment problem. Then, by
Lemma 1.1 and Theorem 4.1 we have

Corollary 5.1

E [Rp] =

⎧⎨⎩
n log n+ (log 2 + )n+O

(
n3/5(log n)2

)
, p = 1;

n2(log n)2 + 2(log 2 + )n2 log n

+
(
�(2) + 2 + 2 log 2− (log 2)2

)
n2 +O

(
n5/3(log n)2

)
, p = 2;

np(log n)p + p(log 2 + )np(log n)p−1 +O
(
np(log n)p−2

)
, p ≥ 3.

We then have our major result on the moments of the bottleneck assignment problem.

Theorem 5.1 Let c∗n be the optimal cost of an n× n bottleneck assignment problem whose costs are iid
random variables from a continuous distribution with cdf F , and let Q = F−1. Suppose that Q(0) = 0
and that Q can be expanded in a Maclaurin series. Let m = mind≥0{Q(d)(0) ∕= 0}. Then, for p ≥ 1, we
have

E[(c∗n)p] =

⎧⎨⎩
Q′(0)

(
logn
n + log 2+

n

)
+O

(
(logn)2

n7/5

)
, mp = 1;(

Q(m)(0)
m!

)p (
(logn)2

n2 + 2(log 2+) logn
n2 + �(2)+2+2 log 2−(log 2)2

n2

)
+O

(
(logn)2

n7/3

)
, mp = 2;(

Q(m)(0)
m!

)p (
(logn)mp

nmp + mp(log 2+)(logn)mp−1

nmp

)
+O

(
(logn)mp−2

nmp

)
, mp ≥ 3.

Proof. As mentioned in the introduction, two fundamental properties of the bottleneck assignment
problem are 1) its optimal solution is taken by one of the cij ’s, and 2) the optimal solution depends
only on the relative rank of the cij ’s and not on their numerical values [5, p. 172]. Thus E[(c∗n)p] =
E[E[(c∗n)p∣R]] = E[E[Xp

(R)]], where X(R) is the Rth order statistic of a random sample of size n2 from

the distribution with cdf F . Since X(R) and F−1(U(R)) have the same distribution, where U(R) is the
Rth order statistic from a random sample of size n2 from a U(0, 1) distribution [7, p. 15], we have
E[E[Xp

(R)]] = E[E[(Q(U(R)))
p]]. Therefore,

E[(c∗n)p] = E[E[(Q(U(R)))
p]]

= E

[
E

[(
Q(m)(0)

m!
Um(R) +O

(
Um+1

(R)

))p]]
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= E

[
E

[
p∑
k=0

(
p

k

)(
Q(m)(0)

m!

)k
Umk(R) O

(
U

(m+1)(p−k)
(R)

)]]

= E

[
E

[(
Q(m)(0)

m!

)p
Ump(R) +O

(
Ump+1

(R)

)]]
.

Because U(R) ∼ beta(R,n2 −R+ 1) [6, p. 233], and the kth moment of a beta(a, b) distribution is [6,
p. 108]

Γ(a+ k)Γ(a+ b)

Γ(a+ b+ k)Γ(a)
,

we have

E[Uk(R)] =
Γ(R+ k)Γ(n2 + 1)

Γ(n2 + 1 + k)Γ(R)
=

(R+ k − 1)(R+ k − 2) ⋅ ⋅ ⋅R
(n2 + k)(n2 + k − 1) ⋅ ⋅ ⋅ (n2 + 1)

=
Rk

n2k
+O

(
Rk−1

n2k

)
.

Therefore,

E[(c∗n)p] = E

[
E

[(
Q(m)(0)

m!

)p
Ump(R) +O

(
Ump+1

(R)

)]]

= E

[(
Q(m)(0)

m!

)p
Rmp

n2mp
+O

(
Rmp−1

n2mp

)
+O

(
Rmp+1

n2mp+2

)]
.

Applying Corollary 5.1 completes the proof. □

If F−1(0) = a ∕= 0, but the rest of the hypotheses of Theorem 5.1 hold, then one can apply the results of
Theorem 5.1 to determine E[(c∗n − a)p] and then use this result to determine E[(c∗n)p].

There are many continuous distributions for which F−1 can be expanded in a Maclaurin series. (The
Gaussian, or normal, distribution is probably the most important of those that cannot.) We illustrate
Theorem 5.1 by considering a few continuous distributions for which our approach can be applied.

Corollary 5.2 Let c∗n be the optimal solution to an n × n bottleneck assignment problem whose costs
are iid random variables from a U [0, 1] distribution. Then

E[(c∗n)p] =

⎧⎨⎩
logn
n + log 2+

n +O
(

(logn)2

n7/5

)
, p = 1;

(logn)2

n2 + 2(log 2+) logn
n2 + �(2)+2+2 log 2−(log 2)2

n2 +O
(

(logn)2

n7/3

)
, p = 2;

(logn)p

np + p(log 2+)(logn)p−1

np +O
(

(logn)p−2

np

)
, p ≥ 3,

and

V ar(c∗n) =
�(2)− 2(log 2)2

n2
+O

(
(log n)2

n7/3

)
.

Proof. For a continuous U [0, 1] distribution, F (x) = x. Thus Q(x) = F−1(x) = x. Since Q(0) = 0,
Q′(0) = 1, and Q(k)(0) = 0 for all k ≥ 2, the result for E[(c∗n)p] follows from Theorem 5.1. The expression
for the variance follows immediately from that for E[(c∗n)p]. □

Corollary 5.2 improves on the previous best-known bounds, due to Pferschy [15], for E[c∗n] when costs
are chosen independently from the U [0, 1] distribution. His results are that, for n > 78,

1− nB
(
n, 1 +

1

n

)
≤ E[c∗n] < 1−

[
2

n(n+ 2)

]2/n
n

n+ 2
+

123

610n
,

which implies
log n+ 

n
+O

(
(log n)2

n2

)
≤ E[c∗n] ≤ 4 log n

n
+O

(
1

n

)
.

Interestingly enough, Pferschy’s lower bound of 1 − nB(n, 1 + 1/n) for E[c∗n] is exactly what one would
obtain by using only S0 to lower bound E[�(�(B) ≥ 1; B̃)] in our proof of Theorem 3.1.
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Corollary 5.3 Let c∗n be the optimal solution to an n × n bottleneck assignment problem whose costs
are iid random variables from an exponential(�) distribution. Then

E[(c∗n)p] =

⎧⎨⎩
logn
�n + log 2+

�n +O
(

(logn)2

n7/5

)
, p = 1;

(logn)2

�2n2 + 2(log 2+) logn
�2n2 + �(2)+2+2 log 2−(log 2)2

�2n2 +O
(

(logn)2

n7/3

)
, p = 2;

(logn)p

�pnp + p(log 2+)(logn)p−1

�pnp +O
(

(logn)p−2

np

)
, p ≥ 3,

and

V ar(c∗n) =
�(2)− 2(log 2)2

�2n2
+O

(
(log n)2

n7/3

)
.

Proof. If the probability density function is f(x) = �e−�x, then F (x) = 1 − e−�x, and Q(x) =
F−1(x) = − 1

� log(1 − x). Since Q(k)(0) exists and is finite for all k ≥ 0, Q(0) = 0, and Q′(0) =
1

�(1−x) ∣x=0 = 1
� , the expression for E[(c∗n)p] follows from Theorem 5.1. The variance follows from the

expression for E[(c∗n)p]. □

The �2(1) distribution gives us a different kind of example, as Q′(0) = 0.

Corollary 5.4 Let c∗n be the optimal solution to an n × n bottleneck assignment problem whose costs
are iid random variables from a �2(1) distribution. Then

E[(c∗n)p] =

⎧⎨⎩
�(logn)2

2n2 + �(log 2+) logn
n2 +

�(�(2)+2+2 log 2−(log 2)2)
2n2 +O

(
(logn)2

n7/3

)
, p = 1;

�p(logn)2p

2pn2p + p�p(log 2+)(logn)2p−1

2p−1n2p +O
(

(logn)2p−2

n2p

)
, p ≥ 2,

and

V ar(c∗n) = O

(
(log n)2

n4

)
.

Proof. For a �2(1) distribution,

F (x) =
1√
2�

∫ x

0

e−t/2t−1/2 dt.

With the change of variable y =
√
t/2 we obtain

F (x) =
2√
�

∫ √x/2
0

e−y
2

dy = erf
(√

x/2
)
,

where erf(x) is the error function. Thus Q(x) = F−1(x) = 2(erf−1(x))2. Now, erf−1(x) has a known

Maclaurin series whose first two terms are
√
�

2 x + �3/2

24 x3 [19]. Thus the first two nonzero terms in

the Maclaurin expansion for Q(x) are �
2x

2 and �2

12x
4. Therefore, Q(0) = Q′(0) = 0, Q′′(0) = �, and

the result follows from Theorem 5.1. For the variance calculation the dominant terms in E[(c∗n)2] and
(E[c∗n])2 cancel. □

As a final example, we can also use Theorem 5.1 when costs are chosen from a beta(a, b) distribution,
provided 1/a ∈ ℤ+.

Corollary 5.5 Let c∗n be the optimal solution to an n × n bottleneck assignment problem whose costs
are iid random variables from a beta(a, b) distribution, where 1/a ∈ ℤ+. Then

E[(c∗n)p] =

⎧⎨⎩
logn
bn + log 2+

bn +O
(

(logn)2

n7/5

)
, a = p = 1;

(aB(a, b))2
(

(logn)2

n2 + 2(log 2+) logn
n2 + �(2)+2+2 log 2−(log 2)2

n2

)
+O

(
(logn)2

n7/3

)
, p/a = 2;

(aB(a, b))p/a
(

(logn)p/a

np/a
+ p(log 2+)(logn)p/a−1

anp/a

)
+O

(
(logn)p/a−2

np/a

)
, p/a ≥ 3,

and

V ar(c∗n) =

⎧⎨⎩
�(2)−2(log 2)2

b2n2 +O
(

(logn)2

n7/3

)
, a = 1;

O
(

(logn)2/a−2

n2/a

)
, 1/a ≥ 2.
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Proof. For a beta(a, b) distribution, F (x) = 1
B(a,b)

∫ x
0
ta−1(1 − t)b−1 dt, where B(a, b) is the beta

function. By expanding (1− t)b−1 in a Maclaurin series and integrating term-by-term we obtain a series
representation

∑∞
k=0 ckx

a+k for F (x) whose first term is 1
aB(a,b)x

a. Inverting this series expression for

F (x), where 1/a ∈ ℤ+, yields a representation of Q(x) as a series of the form
∑∞
k=1 dkx

k/a whose first

term is a1/aB(a, b)1/ax1/a. Since B(a, b) = Γ(a)Γ(b)
Γ(a+b) , B(1, b) = 1/b. The expression for E[c∗n] then follows

from Theorem 5.1, and the expression for the variance follows from that for E[c∗n]. □

Other well-known distributions for which Theorem 5.1 can be applied include the half-normal and the
Pareto, and, for certain values of their parameters, the gamma, Weibull, and log-logistic distributions as
well.
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