Idea of differentiability

For \(f : \mathbb{R} \rightarrow \mathbb{R} \)

- Idea: \(f \) is differentiable at \(x_0 \) if zooming in on the graph at \((x_0, f(x_0))\) gives a line
- Definition: \(f \) is differentiable at \(x_0 \) if \(\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \) exists

For \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \)

- Idea: \(f \) is differentiable at \((x_0, y_0)\) if zooming in on the graph at \((x_0, y_0, f(x_0))\) gives a plane
- Definition: ???

It is not enough to know that \(f_x(x_0, y_0) \) and \(f_y(x_0, y_0) \) exist.
Example: a nondifferentiable function

\[f(x, y) = \begin{cases}
1 & \text{if } x = 0 \text{ or } y = 0 \\
0 & \text{otherwise}
\end{cases} \]

Note that \(f_x(0, 0) = 0 \) and \(f_y(0, 0) = 0 \) so the partial derivatives exist for \((0, 0)\) but zooming in on \((0, 0, 1)\) does not give a plane.
A sufficient condition for differentiability

Defining **differentiable** for \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) is a bit messy.

Can give a sufficient condition for differentiability:

Theorem:
If \((x_0, y_0)\) is a point in the domain of a function \(f \) with

(A) \(f \) defined for all points in an open disk centered at \((x_0, y_0)\),
 and

(B) \(f_x \) and \(f_y \) each continuous for all points in that open disk

then \(f \) is differentiable for \((x_0, y_0)\).
Differentiability as a hypothesis for other results

Differentiability is often a condition needed as a hypothesis.

Theorem:
If f is differentiable in an open region containing the point P, then

$$\left(\frac{df}{ds} \right)_{P, \hat{u}} = \vec{\nabla} f(P) \cdot \hat{u}. $$