Problem: Charge is distributed on a disk of radius R so that the area charge density is proportional to the distance from the center, reaching a maximum value σ_0 at the far edge. Compute the total charge.
Total from area density

\[Q = \int\int_{\text{disk}} \sigma \, dA \]

\[= \int_{a}^{b} \int_{c}^{d} \sigma(x, y) \, dy \, dx \]

\[= \int_{-R}^{R} \int_{-\sqrt{R^2-x^2}}^{\sqrt{R^2-x^2}} \sigma(x, y) \, dy \, dx \]

\[= \int_{-R}^{R} \int_{-\sqrt{R^2-x^2}}^{\sqrt{R^2-x^2}} \frac{\sigma_0}{R} \sqrt{x^2 + y^2} \, dy \, dx \]

\[= \text{not fun to evaluate} \]

Turn to a different coordinate system: polar coordinates.