Undoing differentiation

1. (a) Find a function $F(x)$ with derivative equal to $f(x) = x^2$.

 (b) Find a different function $F(x)$ with derivative equal to $f(x) = x^2$.

 (c) Find all functions $F(x)$ that have derivative equal to $f(x) = x^2$.

 (d) Among the functions $F(x)$ you have in (c), find the one function with $F(6) = 10$.

 (e) Among the functions $F(x)$ you have in (c), find the one function with $F(0) = 2$.

2. (a) Find a function $P(t)$ with derivative equal to $p(t) = e^{3t}$.

 (b) Find a different function $P(t)$ with derivative equal to $p(t) = e^{3t}$.

 (c) Find all functions $P(t)$ that have derivative equal to $p(t) = e^{3t}$.

 (d) Among the functions $P(t)$ you have in (c), find the one function with $P(0) = 10$.
3. For each of the following, find all functions $F(x)$ with derivative equal to the given function $f(x)$.

(a) $f(x) = 5x^2$

(b) $f(x) = 3 + x$

(c) $f(x) = 5x^2 + 7x - 2$

(d) $f(x) = \sin x$

(e) $f(x) = \cos x$

(f) $f(x) = 5x + 3\sin x$

(g) $f(x) = \sec^2 x$

(h) $f(x) = \frac{1}{1 + x^2}$

4. An object in free fall near the earth’s surface has a constant acceleration of $-g$ where $g = 9.8 \text{ m/s}^2$. If $a(t)$ is the object’s acceleration function, we have $a(t) = -g$.

(a) Find all velocity functions $v(t)$ corresponding to the acceleration function $a(t) = -g$.

(b) Among the velocity functions you have in (a), find the one velocity function with $v(0) = 5 \text{ m/s}$.

(c) Among the velocity functions you have in (a), find the one velocity function with $v(0) = v_0$ where v_0 is a constant.

(d) Find all position functions $s(t)$ corresponding to the velocity function you found in (c).

(e) Among the position functions you have in (d), find the one position function with $s(0) = s_0$ where s_0 is a constant.