Problems from Section 2.1

1. Use the Bisection method to find \(p_3 \) for \(f(x) = \sqrt{x} = \cos x \) on \([0, 1]\).
 Note: The text denotes the value of the \(n \)th approximation by \(p_n \).

5. Use the Bisection method to find solutions accurate to with \(10^{-5} \) for the following problems.
 (a) \(x - 2^{-x} = 0 \) for \(0 \leq x \leq 1 \)

7. (a) Sketch the graphs of \(y = x \) and \(y = 2 \sin x \).
 (b) Use the Bisection method to find an approximation to within \(10^{-5} \) to the first positive value of \(x \) with \(x = 2 \sin x \).

11. Let \(f(x) = (x + 2)(x + 1)x(x - 1)^3(x - 2) \). To which zero of \(f \) does the Bisection method converge when applied on the following intervals?
 (a) \([-3, 2.5]\] (b) \([-2.5, 3]\] (c) \([-1.75, 1.5]\] (d) \([-1.5, 1.75]\]
 Note: For each, try to determine the relevant zero with a minimal amount of computation. That is, try to avoid a “brute force” approach such as iterating the bisection method 1000 times and then checking which zero the resulting approximation is near.

18. The function \(f(x) = \sin(\pi x) \) has zeros at every integer. Show that when \(-1 < x < 0\) and \(2 < b < 3\), the Bisection method converges to
 (a) 0, if \(a + b < 2 \) (b) 2, if \(a + b > 2 \) (c) 1, if \(a + b = 2 \)

Programming Problem Modify the implementation of the bisection method from class to include a check that the original interval is valid.