Chapter 14 of *University Calculus*, Hass, Weir, Thomas

Below is a list of sections and subsections for Chapter 14. In the text, subsections are not numbered but each is set off by a title set in blue type. I've labeled the subsections, given the title, and indicated the page number in parenthesis. On the next page is a list of the subsections in the order we covered them in class.

14.1 Line Integral
 14.1.1 Definition and how to evaluate (851, unlabeled)
 14.1.2 Additivity (853)
 14.1.3 Mass and moment calculations (853)

14.2 Vector Fields, Work, Circulation, and Flux
 14.2.1 Vector fields (857)
 14.2.2 Gradient fields (859)
 14.2.3 Work done by a force over a curve in space (859)
 14.2.4 Flow integrals and circulation for velocity fields (862)
 14.2.5 Flux across a plane curve (863)

14.3 Path Independence, Potential Functions, and Conservative Fields
 14.3.1 Path independence (868)
 14.3.2 Assumptions on curves, vector fields, and domains (868)
 14.3.3 Line integrals in conservative fields (870)
 14.3.4 Finding potentials for conservative fields (872)
 14.3.5 Exact differential forms (874)

14.4 Green’s Theorem in the Plane
 14.4.1 Divergence (878)
 14.4.2 Spin around an axis: the \(\hat{k} \)-component of curl (879)
 14.4.3 Two forms for Green’s Theorem (880)
 14.4.4 Using Green’s Theorem to evaluate line integrals (882)
 14.4.5 Proof of Green’s Theorem for special regions (883)

14.5 Surfaces and Area
 14.5.1 Parametrizations of surfaces (887)
 14.5.2 Surface area (888)
 14.5.3 Implicit surfaces (891)

14.6 Surface Integrals and Flux
 14.6.1 Surface integrals (896)
 14.6.2 Orientation (899)
 14.6.3 Surface integral for flux (899)
 14.6.4 Moments and masses of thin shells (901)

14.7 Stokes’ Theorem
 14.7.1 Curl vector (905, unlabeled)
 14.7.2 Stokes’ Theorem (906)
 14.7.3 Paddle wheel interpretation of curl (908)
 14.7.4 Proof of Stokes’ Theorem for polyhedral surfaces (910)
 14.7.5 Stokes’ Theorem for surfaces with holes (911)
 14.7.6 An important identity (911)
 14.7.7 Conservative fields and Stokes’ Theorem (911)

14.8 The Divergence Theorem and a Unified Theory
 14.8.1 Divergence in three dimensions (914)
 14.8.2 Divergence Theorem (914)
 14.8.3 Proof of the Divergence Theorem
 14.8.4 Divergence Theorem for other regions
 14.8.5 Gauss’ Law
 14.8.6 Continuity equation of hydrodynamics
 14.8.6 Unifying the integral theorems
Reordering of Chapter 14 of *University Calculus*, Hass, Weir, Thomas

1. Line integrals for scalar fields
 14.1.1 Definition and how to evaluate (851, unlabeled)
 14.1.2 Additivity (853)
 14.1.3 Mass and moment calculations (853)

2. Surface integral for scalar functions
 14.5.1 Parametrizations of surfaces (887)
 14.5.2 Surface area (888)
 14.6.1 Surface integrals (896)

3. Vector fields
 14.2.1 Vector fields (857)
 14.2.2 Gradient fields (859)

4. Line integrals for vector fields
 14.2.3 Work done by a force over a curve in space (859)
 14.2.4 Flow integrals and circulation for velocity fields (862)
 14.3.1 Path independence (868)
 14.3.2 Assumptions on curves, vector fields, and domains (868)
 14.3.3 Line integrals in conservative fields (870)
 14.3.4 Finding potentials for conservative fields (872)

5. Surface integrals for vector fields
 14.6.2 Orientation (899)
 14.6.3 Surface integral for flux (899)
 14.2.5 Flux across a plane curve (863)

6. Divergence and curl
 14.8.1 Divergence (878)
 14.8.2 Divergence in three dimensions (914)
 14.4.2 Spin around an axis: the \hat{k}-component of curl (879)
 14.7.1 Curl vector (905, unlabeled)
 14.7.3 Paddle wheel interpretation of curl (908)
 14.7.4 Proof of Stokes’ Theorem for polyhedral surfaces (910)
 14.7.6 An important identity (911)

7. The Divergence Theorem
 14.8.2 Divergence Theorem (914)
 14.8.7 Unifying the integral theorems

8. Stokes’ Theorem
 14.7.2 Stokes’ Theorem (906)
 14.4.3 Two forms for Green’s Theorem (880) (tangential form)
 14.4.4 Using Green’s Theorem to evaluate line integrals (882)
 14.7.6 An important identity (911)
 14.7.7 Conservative fields and Stokes’ Theorem (911)

9. Omitted
 14.3.5 Exact differential forms (874)
 14.4.3 Two forms for Green’s Theorem (880) (normal form)
 14.4.5 Proof of Green’s Theorem for special regions (883)
 14.5.3 Implicit surfaces (891)
 14.6.4 Moments and masses of thin shells (901)
 14.7.4 Proof of Stokes’ Theorem for polyhedral surfaces (910)
 14.7.5 Stokes’ Theorem for surfaces with holes (911)
 14.8.3 Proof of the Divergence Theorem
 14.8.4 Divergence Theorem for other regions
 14.8.5 Gauss’ Law
 14.8.6 Continuity equation of hydrodynamics