Consider a surface charge density of the form

$$\sigma = \sigma_0 \exp \left[- \left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 \right]$$

where \(\sigma_0, a, \) and \(b \) are constants while \(x \) and \(y \) are cartesian coordinates for the plane.

1. Let \(a = b \). Take the charge to be distributed on a disk of radius \(R_0 \) centered at the origin.

 (a) Compute the total charge on the disk.

 (b) Compute the force exerted by this distribution of charge on a charge of size \(Q \) at the point \((0, 0, z_0)\).

2. Let \(a = 0.2 \text{ m} \) and \(b = 0.1 \text{ m} \). Take the charge to be distributed on a square of side length \(0.02 \text{ m} \) centered at the origin.

 (a) Compute the total charge on the disk.

 (b) Compute the force exerted by this distribution of charge on a charge of size \(10^{-6} \text{ C} \) at the point \((0, 0, 0.4 \text{ m})\).