Consider stuff moving by advection along a line (coordinatized by x for $-\infty < x < \infty$) with speed $c(x,t) = ax$ where a is a constant. Assume that the stuff is conserved and that there are no creation or destruction processes. Consider starting at time $t = 0$ with a prescribed density distribution. Set up a model for this scenario consisting of a partial differential equation together with an initial condition. Find the specific solution for this initial-value problem. Give a general interpretation of the specific solution without specifying an explicit initial condition. As part of this, describe the role of the parameter a. Also as part of this, use the specific solution to explicitly show that the stuff is conserved. Then, choose a specific nontrivial initial condition and a nontrivial value for the parameter a. Give visualizations of the specific solution for those choices.