Problem: Design a fence to enclose a rectangular region of area 1200 m\(^2\). Material for one edge (facing the street) costs $50 per meter while material for the other three edges costs $30 per meter.
Problem: Design a fence to enclose a rectangular region of area 1200 m2. Material for one edge (facing the street) costs $50 per meter while material for the other three edges costs $30 per meter.
Problem: Design a fence to enclose a rectangular region of area 1200 m2. Material for one edge (facing the street) costs $50 per meter while material for the other three edges costs $30 per meter.

Objective: Minimize $C = 50l + 30w + 2 \cdot 30w = 80l + 60w$.
Problem: Design a fence to enclose a rectangular region of area 1200 m2. Material for one edge (facing the street) costs $50 per meter while material for the other three edges costs $30 per meter.

Objective: Minimize $C = 50\ell + 30w + 2 \cdot 30w = 80\ell + 60w$.

Constraint: Need $\ell w = 1200$.
Method 1

Idea:
Solve constraint for one of the variables and then substitute into the objective function to reduce the number of variables.

\[\ell = 1200 \]
\[w \]

Therefore

\[C = 80\ell + 60w = 80(1200) + 60w = 96000 + 60w. \]

Compute

\[C' = -96000w^2 + 60. \]

Solve

\[-96000w^2 + 60 = 0 \]

To get

\[w = \pm 40. \]

Use

\[w = 40 \]

To get

\[\ell = \frac{1200}{40} = 30. \]

So build fence with expensive edge of length 30 meters and other dimension of 40 meters.
Method 1

Idea: Solve constraint for one of the variables and then substitute into the objective function to reduce the number of variables.
Method 1

Idea: Solve constraint for one of the variables and then substitute into the objective function to reduce the number of variables.

\[\ell = \frac{1200}{w} \]
Method 1

Idea: Solve constraint for one of the variables and then substitute into the objective function to reduce the number of variables.

\[\ell = \frac{1200}{w} \quad \text{so} \quad C = 80\ell + 60w = 80\frac{1200}{w} + 60w = \frac{96000}{w} + 60w. \]
Idea: Solve constraint for one of the variables and then substitute into the objective function to reduce the number of variables.

\[\ell = \frac{1200}{w} \] so \[C = 80\ell + 60w = 80\frac{1200}{w} + 60w = \frac{96000}{w} + 60w. \]

Compute \(C' = -\frac{96000}{w^2} + 60. \)
Method 1

Idea: Solve constraint for one of the variables and then substitute into the objective function to reduce the number of variables.

\[l = \frac{1200}{w} \quad \text{so} \quad C = 80l + 60w = 80 \frac{1200}{w} + 60w = \frac{96000}{w} + 60w. \]

Compute \(C' = -\frac{96000}{w^2} + 60. \)

Solve \(-\frac{96000}{w^2} + 60 = 0\) to get \(w = \pm 40. \)
Method 1

Idea: Solve constraint for one of the variables and then substitute into the objective function to reduce the number of variables.

\[\ell = \frac{1200}{w} \quad \text{so} \quad C = 80\ell + 60w = 80 \frac{1200}{w} + 60w = \frac{96000}{w} + 60w. \]

Compute \(C' = -\frac{96000}{w^2} + 60. \)

Solve \(-\frac{96000}{w^2} + 60 = 0 \) to get \(w = \pm 40. \)

Use \(w = 40 \) to get \(\ell = \frac{1200}{40} = 30 \)
Method 1

Idea: Solve constraint for one of the variables and then substitute into the objective function to reduce the number of variables.

\[
l = \frac{1200}{w} \quad \text{so} \quad C = 80l + 60w = 80\frac{1200}{w} + 60w = \frac{96000}{w} + 60w.
\]

Compute \(C' = -\frac{96000}{w^2} + 60 \).

Solve \(-\frac{96000}{w^2} + 60 = 0 \) to get \(w = \pm 40 \).

Use \(w = 40 \) to get \(l = \frac{1200}{40} = 30 \).

So build fence with expensive edge of length 30 meters and other dimension of 40 meters.
Constraint curve \(A = \ell w = 1200 \)

Level curves for objective \(C = 80\ell + 60w \)

Gradient vectors for constraint \(A = \ell w \)

Gradient vectors for objective \(C = 80\ell + 60w \)
Idea for Method 2

Constraint curve $A = lw = 1200$

Level curves for objective $C = 80l + 60w$

Gradient vectors for constraint $A = lw$

Gradient vectors for objective $C = 80l + 60w$
Idea for Method 2

Constraint curve $A = \ell w = 1200$
Level curves for objective $C = 80\ell + 60w$

Gradient vectors for constraint $A = \ell w$
Gradient vectors for objective $C = 80\ell + 60w$
Constraint curve $A = \ell w = 1200$
Level curves for objective $C = 80\ell + 60w$
Gradient vectors for constraint $A = \ell w$
Gradient vectors for objective $C = 80\ell + 60w$
Idea for Method 2

Maximum or minimum of objective along constraint curve will be at a point where

\[\vec{\nabla} C = \lambda \vec{\nabla} A \]

for some constant \(\lambda \).
Idea for Method 2

Maximum or minimum of objective along constraint curve will be at a point where

objective level curve is tangent to constraint curve
Idea for Method 2

Maximum or minimum of objective along constraint curve will be at a point where

objective level curve is tangent to constraint curve

\[\vec{\nabla}C = \lambda \vec{\nabla}A \]

for some constant \(\lambda \)

\[\vec{\nabla}(C + \lambda A) = 0 \]

for some constant \(\lambda \)
Idea for Method 2

Maximum or minimum of objective along constraint curve will be at a point where

- objective level curve is tangent to constraint curve
- objective gradient $\vec{\nabla} C$ is aligned with constraint gradient $\vec{\nabla} A$
- $\vec{\nabla} C = \lambda \vec{\nabla} A$ for some constant λ
Idea for Method 2

Maximum or minimum of objective along constraint curve will be at a point where

objective level curve is tangent to constraint curve

$\vec{\nabla}C$ is aligned with constraint gradient $\vec{\nabla}A$

$\vec{\nabla}C = \lambda \vec{\nabla}A$ for some constant λ

$\vec{\nabla}(C + \lambda A) = \vec{0}$ for some constant λ