Approximating a function with a series of sines

Use *Mathematica* (or something equivalent) to do the following.

1. Plot the function $f(x)$ shown below.

![Function Plot](image)

2. Use *Manipulate* to build a plot showing both $f(x)$ and $a_1 \sin(x)$ with a_1 as the manipulation variable. Experiment to find the value of a_1 for which $a_1 \sin(x)$ best approximates $f(x)$.

 $a_1 =$

3. Use *Manipulate* to build a plot showing both $f(x)$ and $a_1 \sin(x) + a_2 \sin(2x)$ with a_1 fixed at the optimal value you found in Part 2 and a_2 as the manipulation variable. Experiment to find the value of a_2 for which $a_1 \sin(x) + a_2 \sin(2x)$ best approximates $f(x)$.

 $a_2 =$

4. Extend this idea to get values for a_k for as many values of k as you have time.

 $a_3 =$
 $a_4 =$
 $a_5 =$
 $a_6 =$
 $a_7 =$

5. In making your choices above, you had in mind some criterion for “best approximates”. Write a description of that criterion. Then, try to come up with one or two other reasonable criteria for “best approximates”.