The accompanying plot below shows constant temperature T (in Kelvin) level curves as given by the ideal gas law $pV = nRT$ with $n = 0.15 \text{ mol}$ and $R = 0.082 \text{ L·atm/(mol·K)}$.

1. Estimate the rate of change in temperature T with respect to change in volume V for $V = 0.2 \text{ L}$ and $p = 0.2 \text{ atmospheres}$.

2. Estimate the rate of change in temperature T with respect to change in pressure p for $V = 0.2 \text{ L}$ and $p = 0.2 \text{ atmospheres}$.

3. Repeat Steps 1 and 2 for each of the following (V, p) pairs.

 (a) $(0.2 \text{ L}, 0.4 \text{ atm})$ (b) $(0.2 \text{ L}, 0.6 \text{ atm})$ (c) $(0.2 \text{ L}, 0.8 \text{ atm})$

 (d) $(0.4 \text{ L}, 0.2 \text{ atm})$ (e) $(0.6 \text{ L}, 0.2 \text{ atm})$ (f) $(0.8 \text{ L}, 0.2 \text{ atm})$

4. Use your previous results to make a plot showing rate of change in temperature T with respect to volume V versus pressure p for $V = 0.2 \text{ L}$.

5. Use your previous results to make a plot showing rate of change in temperature T with respect to volume V versus volume V for $p = 0.2 \text{ atm}$.

6. Use your previous results to make a plot showing rate of change in temperature T with respect to pressure p versus pressure p for $V = 0.2 \text{ L}$.

7. Use your previous results to make a plot showing rate of change in temperature T with respect to pressure p versus volume V for $p = 0.2 \text{ atm}$.