Limit of a sequence

We want to write down a precise definition of what it means to say a sequence has a limit (and thus is convergent). As example, the sequence \(\{1/n\} = \{1, 1/2, 1/3, 1/4, \ldots\} \) is convergent with the limit 0. We begin with an informal idea.

Rough idea: The number \(A \) is the limit of the sequence \(\{a_n\} \) if, as \(n \) gets large, the elements \(a_n \) “settle down” so that \(A \) is the only reasonable value at “the end of the list”.

To make this precise, we quantify what we mean by “large” values of the index \(n \) and we quantify what we mean by “settle down”. We will use \(N \) to denote a specific index value that counts as “large”. We will use \(\epsilon \) to denote a measure of how close \(a_n \) is to \(A \).

Precise idea: The number \(A \) is the limit of the sequence \(\{a_n\} \) if for any positive measure \(\epsilon > 0 \), there is an index value \(N \) beyond which all elements \(a_n \) are within \(\epsilon \) of \(A \).

We can use inequalities to express this more compactly (and in a way that is easier to manipulate mathematically). Rather than writing “positive measure \(\epsilon \)”, we use \(\epsilon > 0 \). In place of writing “index value \(N \) beyond which”, we use \(n > N \). Finally, rather than writing “elements \(a_n \) are within \(\epsilon \) of \(A \)” we use \(|a_n - A| < \epsilon \).

Compact version: The number \(A \) is the limit of the sequence \(\{a_n\} \) if for any \(\epsilon > 0 \), there is an index value \(N \) so that \(n > N \) implies \(|a_n - A| < \epsilon \).

Example: To prove that \(A = 0 \) is the limit of \(\{a_n\} = \{1/n\} \), we start by considering a fixed value of \(\epsilon > 0 \). So \(\epsilon \) is a given from which we need to construct (or show the existence of) an appropriate value of \(N \). We need to find \(N \) to guarantee that \(n > N \) implies \(|a_n - A| < \epsilon \). In this case, we need \(|1/n - 0| < \epsilon \). This is equivalent to \(n > 1/\epsilon \). So, any integer bigger than \(1/\epsilon \) will work as a value of \(N \). To be specific, we can choose \(N \) to be the smallest integer that is larger than \(1/\epsilon \).

So, given any \(\epsilon > 0 \), we choose \(N \) to be the smallest integer larger than \(1/\epsilon \) to have \(n > 1/\epsilon \). If \(n > N \), then \(1/n < 1/N < \epsilon \). So \(1/n < \epsilon \) which is equivalent to \(|1/n - 0| < \epsilon \). Therefore 0 is the limit of \(\{1/n\} \).