Constructing definite integrals

1. Consider the problem of computing the total mass of a column of air. The density of air decreases as height above sea level increases. Let \(h \) be height above sea level measured in meters (m). Let \(\rho \) be the density of air, measured in kilograms per cubic meter (kg/m\(^3\)). Note that \(\rho \) varies with height \(h \). (Here, \(\rho \) is the lower case Greek letter “rho”.)

 (a) Construct a definite integral to compute the total mass of air in a cylindrical column of radius \(R \) and height \(H \) with its base at sea level.

 (b) Compute the total mass of air if \(\rho(h) = \rho_0 e^{-kh} \) where \(\rho_0 \) and \(k \) are positive constants.

 (c) Get a numerical value for the total mass using the values \(\rho_0 = 1.22 \text{ kg/m}^3 \), \(k = 1.1 \times 10^{-4} \text{ m}^{-1} \), \(R = 1 \text{ m} \) and \(H = 10000 \text{ m} \).

2. Consider the problem of computing the total number of bacteria in a circular petri dish. The bacteria colony is more dense at the center than at the edges of the petri dish. Let \(r \) denote radial distance from the center of the dish measured in centimeters (cm). Let \(\sigma \) be the density of the bacteria colony, measured in number per square centimeter (#/cm\(^2\)). Note that \(\sigma \) varies with radius \(r \). (Here, \(\sigma \) is the lower case Greek letter “sigma”.)

 (a) Construct a definite integral to compute the total number of bacteria in a petri dish of radius \(R \).

 (b) Compute the total number of bacteria if the density is \(\sigma_0 \) at the center of the dish and decreases linearly to zero at the edge of the dish.

 (c) Get a numerical value for the total number with the density as in (b) and the values \(\sigma_0 = 5.4 \times 10^3 \text{ per cm}^2 \) and \(R = 5.5 \text{ cm} \).

3. Here is a fact about continuously compounded interest: An amount \(A \) (in dollars) in an account earning interest at a continuously compounded rate \(r \) (in % per year) has a value after \(\tau \) years of \(A e^{r \tau} \).

 Consider the problem of computing the future value of deposits in an investment account. Money is deposited into the account at a known rate and the account earns interest compounded continuously. Let \(t \) be a time in years and \(\delta \) be the deposit rate (in dollars per year). Note that \(\delta \) can vary with time \(t \).

 (a) Construct a definite integral to compute the value of an account \(T \) years in the future.

 (b) Compute the future value if the deposit rate is a constant \(\delta_0 \) in dollars per year.

 (c) Get a numerical value for the future value at 5 years with a constant deposit rate of $1000 per year and an interest rate of 6%. Of this, how much is earned interest?