Some theory on linear homogeneous ODEs

We’ll use the following notation:

- $C^n(a,b)$ is the vector space of functions with continuous nth derivative on the domain (a,b).
- $L = D^n + a_{n-1}D^{n-1} + \cdots + a_1D + a_0$ where each of the coefficients a_i is a function of the independent variable and D is the differentiation operator.
- $W_S(t)$ is the Wronskian of the set $S = \{f_1(t), f_2(t), \ldots, f_n(t)\}$ defined as

$$W_S(t) = \det \begin{bmatrix} f_1(t) & f_2(t) & \cdots & f_n(t) \\ f'_1(t) & f'_2(t) & \cdots & f'_n(t) \\ \vdots & \vdots & \ddots & \vdots \\ f^{(n-1)}_1(t) & f^{(n-1)}_2(t) & \cdots & f^{(n-1)}_n(t) \end{bmatrix}$$

Theorem 1. Let $S = \{f_1(t), f_2(t), \ldots, f_n(t)\}$ be a set of functions in $C^n(a,b)$. If there is a t_0 in (a,b) such that $W_S(t_0)$ is nonzero, then S is linearly independent.

Proof. Start with the defining equation of linear independence

$$c_1f_1(t) + c_2f_2(t) + \cdots + c_nf_n(t) = \theta(t)$$

where $\theta(t)$ is the zero function. We must show that the only solution is the trivial solution. Differentiate both sides of this equation $n - 1$ times to generate a system of equations

$$c_1f'_1(t) + c_2f'_2(t) + \cdots + c_nf'_n(t) = \theta(t)$$
$$c_1f''_1(t) + c_2f''_2(t) + \cdots + c_nf''_n(t) = \theta(t)$$
$$\vdots$$
$$c_1f^{(n-1)}_1(t) + c_2f^{(n-1)}_2(t) + \cdots + c_nf^{(n-1)}_n(t) = \theta(t)$$

The Wronskian $W_S(t)$ is defined as the determinant of the coefficient matrix for this system. Hence, if the Wronskian is nonzero for t_0 in (a,b), the system has a unique solution for that value t_0. This unique solution must be the trivial solution because the system of equations is homogeneous. Thus, the trivial solution is the only solution for all values of t. \qed

We now look at the set of solutions for an nth order, linear homogeneous differential equation $L[y(t)] = \theta(t)$. We can view the solution set as the null space $\mathcal{N}(L)$, defined as

$$\mathcal{N}(L) = \{y \in C^n(a,b) | L[y] = 0\}.$$

Theorem 2. If $a_{n-1}(t), \ldots, a_1(t), a_0(t)$ are continuous for all t in (a,b) and L is defined as above, then the solution set $\mathcal{N}(L)$ is a subspace of $C^n(a,b)$ of dimension n.
Proof. Since L is a linear transformation, we know that $\mathcal{N}(L)$ is a subspace of $C^n(a, b)$ by a standard theorem of linear algebra (for example, see Theorem NSLTS of FCLA). To show that it has dimension n, we will find a basis with n elements.

To begin, we claim the existence of n solutions to the O.D.E. by the existence-uniqueness theorem. In particular, pick some t_0 in I and let $h_1(t), h_2(t), \ldots, h_n(t)$ be the solutions that satisfy the following sets of initial conditions

$$
h_1(t_0) = 1, \quad h_1'(t_0) = 0, \quad \ldots, \quad h_1^{(n-1)}(t_0) = 0
$$

$$
h_2(t_0) = 0, \quad h_2'(t_0) = 1, \quad \ldots, \quad h_2^{(n-1)}(t_0) = 0
$$

$$
\vdots
$$

$$
h_n(t_0) = 0, \quad h_n'(t_0) = 0, \quad \ldots, \quad h_n^{(n-1)}(t_0) = 1
$$

To prove that $\{h_1(t), h_2(t), \ldots, h_n(t)\}$ is a basis for $N(L)$, we must show two things: one, that the set is linearly independent; and two, that the set spans $N(L)$.

To show linear independence, we note that

$$W[h_1, h_2, \ldots, h_n](t_0) = 1 \neq 0.$$

By Theorem 1, the set $\{h_1(t), h_2(t), \ldots, h_n(t)\}$ is linearly independent.

To prove that the set $\{h_1(t), h_2(t), \ldots, h_n(t)\}$ spans $N(L)$, we must show that any other solution in $N(L)$ can be written as a linear combination of the elements in $\{h_1(t), h_2(t), \ldots, h_n(t)\}$. Let $y(t)$ be any solution. At t_0, this solution and its derivatives have some values

$$y(t_0) = c_1, \quad y'(t_0) = c_2, \quad \ldots, \quad y^{(n-1)}(t_0) = c_n.$$

Consider the solution given by the linear combination $c_1 h_1(t) + c_2 h_2(t) + \cdots + c_n h_n(t)$. Note that at t_0, this solution and its derivatives has the same values as the solution $y(t)$ and its derivatives. Hence, by the existence-uniqueness theorem, we have

$$y(t) = c_1 h_1(t) + c_2 h_2(t) + \cdots + c_n h_n(t).$$

This gives $y(t)$ as a linear combination of the elements in $\{h_1(t), h_2(t), \ldots, h_n(t)\}$ and thus completes the proof.

Theorem 3. Let $S = \{y_1(t), y_2(t), \ldots, y_n(t)\}$ be a set of n solutions to the n^{th} order linear differential equation $L[y] = 0$ with coefficient functions a_i that are continuous for (a, b). The set S is linearly independent if and only if there is a t_0 in (a, b) such that $W_S(t_0)$ is nonzero.

Proof. The proof of one direction follows immediately from Theorem 1. The proof of the other direction is an exercise.

Exercises

1. Determine if $S = \{t^3, |t|^3\}$ is linearly independent in $C^2(−\infty, \infty)$ without using the Wronskian. Now compute the Wronskian of S. Comment on these results in relation to Theorems 1 and 3.

2. Finish the proof of Theorem 3. Hint: Work with the contrapositive of the statement to be proven: If $W_S(t) = 0$ for all t in (a, b), then S is linearly dependent. Don’t forget that here the set S consists of solutions to $L[y] = 0$.