Consider the function

\[U(r) = \frac{A}{r^4} - \frac{B}{r^2} \]

where \(A \) and \(B \) are parameters with \(A > 0 \) and \(B > 0 \). Functions of something like this form are used in physics and chemistry as a model of the potential energy of interaction between two molecules where \(r \) is the distance between the molecules. The relevant domain is thus \((0, \infty)\).

1. Use the methods of Sections 4.3 through 4.5 to make a plot that shows all of the essential features on the graph of this function for \(r \) in \((0, \infty)\). Note that the scales for your axes will be in terms of the parameters \(A \) and \(B \). You will probably find that the quantity \(\sqrt{A/B} \) is convenient to use as the unit for the \(r \)-axis.

2. Describe how the essential features of the graph change if \(B \) is held constant and \(A \) is changed.

3. Describe how the essential features of the graph change if \(A \) is held constant and \(B \) is changed.