A precise definition of limit

Definition:
Let \(f \) be a function whose domain contains a set of the form \(\{x \mid 0 < |x - a| < r\} \) for some \(r \). The number \(L \) is the limit of \(f \) at \(a \) if there is a positive function \(\delta(\varepsilon) \) with domain \((0, \infty)\) such that \(0 < |x - a| < \delta(\varepsilon) \) implies that \(|f(x) - L| < \varepsilon \).

Notation:
If the number \(L \) is the limit of the function \(f \) at \(a \), we denote this by \(\lim_{x \to a} f(x) = L \).

Comment:
The condition that \(\delta(\varepsilon) \) has domain \((0, \infty)\) says that \(\delta(\varepsilon) \) is defined for any \(\varepsilon > 0 \). Saying that \(\delta(\varepsilon) \) is a positive function means that \(\delta(\varepsilon) > 0 \) for any \(\varepsilon > 0 \). This is equivalent to saying that the range of \(\delta(\varepsilon) \) is contained in the interval \((0, \infty)\).

Example: Prove that \(\lim_{x \to 1} (4x + 1) = 5 \).
Solution: In this case, \(f(x) = 4x + 1 \), \(a = 1 \), and \(L = 5 \).
Let \(\delta(\varepsilon) = \frac{\varepsilon}{4} \). Note that \(\delta(\varepsilon) \) is defined for \(\varepsilon > 0 \) and that \(\delta(\varepsilon) > 0 \) for each \(\varepsilon > 0 \).
Now assume \(0 < |x - 1| < \delta(\varepsilon) \). Thus \(|x - 1| < \frac{\varepsilon}{4} \). Multiply both sides by 4 to get \(4|x - 1| < \varepsilon \) or \(|4x - 4| < \varepsilon \). Since \(-4 = 1 - 5 \), we can write the last inequality as \(|4x + 1 - 5| < \varepsilon \). This is equivalent to \(|f(x) - 5| < \varepsilon \).
We have shown that \(\delta(\varepsilon) = \frac{\varepsilon}{4} \) is a positive function with domain \((0, \infty)\) such that \(0 < |x - 1| < \delta(\varepsilon) \) implies \(|f(x) - 5| < \varepsilon \) for the function \(f(x) = 4x + 1 \). We have thus proven that \(\lim_{x \to 1} (4x + 1) = 5 \).

Example: Prove that \(\lim_{x \to 0} x^2 = 0 \).
Solution: In this case, \(f(x) = x^2 \), \(a = 0 \), and \(L = 0 \).
Let \(\delta(\varepsilon) = \sqrt{\varepsilon} \). Note that \(\delta(\varepsilon) \) is defined for \(\varepsilon > 0 \) and that \(\delta(\varepsilon) > 0 \) for each \(\varepsilon > 0 \).
Now assume \(0 < |x - 0| < \delta(\varepsilon) \). Thus \(|x| < \sqrt{\varepsilon} \). Square both sides to get \(|x|^2 < \varepsilon \) or \(|x^2| < \varepsilon \). Since \(x^2 = x^2 - 0 \), we can write the last inequality as \(|x^2 - 0| < \varepsilon \). This is equivalent to \(|f(x) - 0| < \varepsilon \).
We have shown that \(\delta(\varepsilon) = \sqrt{\varepsilon} \) is a positive function with domain \((0, \infty)\) such that \(0 < |x - 0| < \delta(\varepsilon) \) implies \(|f(x) - 0| < \varepsilon \) for the function \(f(x) = x^2 \). We have thus proven that \(\lim_{x \to 0} x^2 = 0 \).

Problems:
1. Prove \(\lim_{x \to 2} (3x - 1) = 5 \).
2. Prove \(\lim_{x \to 4} (6 - 2x) = -2 \).
3. Prove \(\lim_{x \to 5} \frac{x}{10} = \frac{1}{2} \).
4. Prove \(\lim_{x \to 0} x^3 = 0 \).