Chapter 5: Derivatives

Definition 1
Let \(f \) be defined on \((a, b)\) and assume that \(c \in (a, b) \). Then \(f \) is said to be differentiable at \(c \) whenever the limit
\[
\lim_{x \to c} \frac{f(x) - f(c)}{x - c}
\]
exists. This limit is called the derivative of \(f \) at \(c \), and is denoted \(f'(c) \).

Classroom Activity 1: Prove that the derivative of \(f(x) = x^2 + 1 \) exists at \(c = 2 \).

Classroom Activity 2: Write down three other common ways of denoting \(f'(c) \).

Theorem 1. If \(f \) is defined on \((a, b)\) and differentiable at \(c \in (a, b) \), then there exists a function \(f^*_c(x) \) which is continuous at \(c \) and which satisfies the equation
\[
f(x) - f(c) = (x - c)f^*_c(x),
\]
for all \(x \in (a, b) \), with \(f^*(c) = f'(c) \). Conversely, if there is a function \(f^* \), continuous at \(c \), which satisfies this equation, then \(f \) is differentiable at \(c \) and \(f'(c) = f^*_c(c) \).

Classroom Activity 3: Sketch \(f^*_c(x) \) if \(f(x) = x + 3 \) and \(c = 1 \).
Classroom Activity 4: Sketch $f'(x)$ if $f(x) = x^2 + 3$ and $c = 1$.

Classroom Activity 5: Prove this theorem.

Theorem 2. If f is differentiable at c, then f is continuous at c.

Classroom Activity 6: Prove this theorem.

Theorem 3. Assume f and g are defined on (a, b) and differentiable at c. Then $f \cdot g$ is also differentiable at c, and $(f \cdot g)'(c) = f(c)g'(c) + f'(c)g(c)$.

Classroom Activity 7: Prove this theorem.
Theorem 4. Let \(f \) be defined on an open interval \(S \), let \(g \) be defined on \(f(S) \), and consider the composition
\[
(g \circ f)(x) = g[f(x)].
\]
Assume there is a point \(c \) in \(S \) such that \(f(c) \) is an interior point of \(f(S) \). If \(f \) is differentiable at \(c \) and if \(g \) is differentiable at \(f(c) \), then \(g \circ f \) is differentiable at \(c \) and we have
\[
(g \circ f)'(c) = g'[f(c)]f'(c).
\]

Classroom Activity 8: If \(f \) is continuous on all of \(S \), is \(f(c) \) necessarily an interior point of \(f(S) \) under the given hypotheses? Why or why not?

Classroom Activity 9: Using your book if necessary, provide an outline to the proof of this theorem.