Concept Review for Exam 3

• Double integrals
 – The double integral of \(z = f(x,y) \) over a region \(\mathcal{R} \) is the signed volume of the region between the graph of \(f \) and the region \(\mathcal{R} \).

 \[\int \int_{\mathcal{R}} 1 \, dA \] can be interpreted as the area of \(\mathcal{R} \).

 – If \(f(x,y) \) is continuous, then the order of integration doesn’t matter (i.e. you can integrate first with respect to \(x \), then \(y \), or first with respect to \(y \), then \(x \)).

 – That said, if the region \(\mathcal{R} \) is \textit{vertically simple}, it is usually easier to integrate in the \(y \)-direction first, then the \(x \)-direction. If it is \textit{horizontally simple}, then it is usually easier to integrate in the \(x \)-direction first, then the \(y \)-direction.

 – The \textbf{average value} of \(f(x,y) \) over a region \(\mathcal{R} \) is

 \[\overline{f} = \frac{1}{\text{Area}(\mathcal{R})} \int \int_{\mathcal{R}} f(x,y) \, dA. \]

 – If \(\mathcal{R} \) can be broken into pieces, i.e. \(\mathcal{R} = \bigcup_{i=1}^{m} \mathcal{R}_i \), then the integral of \(f(x,y) \) over \(\mathcal{R} \) can be expressed as the sum of the integrals of \(f(x,y) \) over the subregions \(\mathcal{R}_i \).

 – \textbf{Polar coordinates} are good for performing integrals over regions that exhibit circular symmetry. In polar coordinates, the \textbf{unit volume} is

 \[dV = r \, dr \, d\theta, \]

 and the relation between \(x \) and \(y \) and \(r \) and \(\theta \) is given by

 \[
 x = r \cos \theta \\
y = r \sin \theta.
 \]

• Triple Integrals

 – Triples integrals are integrals over solid bodies. It is often difficult to give a simple geometric description of triple integrals.

 – In 3 dimensions, a \textbf{simple region} is one lying between two surfaces \(z_1(x,y) \) and \(z_2(x,y) \), all lying over some domain in the \(x - y \) plane.

 – As with 2-D integrals, triple integrals can, in principle, be performed iteratively, and in any order.

 – The \textbf{volume} of a region \(\mathcal{R} \) in 3-space is the value of the integral

 \[
 \int \int \int_{\mathcal{R}} 1 \, dV.
 \]
- The **average value** of $f(x, y, z)$ over a region \mathcal{R} is

$$\overline{f} = \frac{1}{\text{Volume}(\mathcal{R})} \int \int \int_{\mathcal{R}} f(x, y, z) dV.$$

- **Cylindrical coordinates** are useful for integrating over regions which exhibit cylindrical symmetry.

- In cylindrical coordinates, the **unit volume** is the quantity

$$dV = r \cos \theta \, dr \, d\theta \, dz,$$

and the relation between x, y, and z and r, θ, and ϕ is given by

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = z.$$

- **Spherical coordinates** are good for integrating over regions which exhibit spherical symmetry.

- In spherical coordinates, the **unit volume** is the quantity

$$dV = \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi,$$

and the relation between x, y, and z and r, θ, and ϕ is given by

$$x = \rho \cos \theta \sin \phi$$
$$y = \rho \sin \theta \sin \phi$$
$$z = \rho \cos \phi$$