More questions whose answer you ought to know if you intend to take Exam 2

Decide whether each of the following is true or false.

(1) In order to calculate a confidence interval for an estimator, you need know the standard deviation of the estimator.

 True

(2) In order to calculate a confidence interval for an estimator, the estimator needs to be normally distributed.

 False

(3) Let I_{90} denote a 90% confidence interval for some estimator. Then I_{90} can be interpreted in the following way: if you repeat the experiment many times, 90% of your estimators will fall in I_{90}.

 False

(4) Let I_{90} denote a 90% confidence interval for some estimator. Then I_{90} can be interpreted in the following way: if you repeat the experiment many times, and for each experiment form I_{90} in the same way, then 90% of the I_{90} will contain the true value of the parameter.

 True

(5) Suppose that a null hypothesis states that $\mu = \mu_0$. In order to calculate the P value of an estimator of μ, you need to know the alternative hypothesis.

 True

(6) In order to calculate a P value for a statistic, you need to know the distribution of that statistic.

 False (you don’t KNOW it, you ASSUME it)

(7) In order to calculate a P value for a statistic, you need to assume a distribution for that statistic.

 True (see above)

(8) Suppose a null hypothesis states that a certain parameter has a certain value. Suppose you form an estimator for that parameter. If your estimate has a large P value, then the null hypothesis is likely to be true.

 False

(9) Suppose a null hypothesis states that a certain parameter has a certain value. Suppose you form an estimator for that parameter. If your estimate has a small P value, then the null hypothesis is likely
to be false.

True

(10) Consider an estimator for a parameter μ. The P value of this estimator depends not just on the null hypothesis, but on the alternative hypothesis as well.

True

(11) Suppose an estimator for μ has a P value of 0.20, where the P value is calculated against a 2-sided alternative. Then a 95% confidence interval around the estimator contains μ_0.

True