Problem Statement: Assume \(f : S \rightarrow T \) is uniformly continuous on \(S \), where \(S \) and \(T \) are metric spaces. If \(\{x_n\} \) is any Cauchy sequence in \(S \), prove that \(\{f(x_n)\} \) is a Cauchy sequence in \(T \).

Proof. Since \(f \) is uniformly continuous, given \(\epsilon > 0 \), there exists \(\delta > 0 \) dependent only on \(\epsilon \) such that if \(d_S(x, y) < \delta \) then

\[
d_T(f(x), f(y)) < \epsilon
\]

for \(x, y \in S \). For this \(\delta \), since \(\{x_n\} \) is Cauchy, there exists an \(N \) such that

\[
d_S(x_n, x_m) < \delta
\]

whenever \(n, m \geq N \). Hence,

\[
d_T(f(x_n), f(x_m)) < \epsilon
\]

whenever \(n, m \geq N \), so \(\{f(x_n)\} \) is Cauchy. \(\Box \)