Problem Statement: Prove or disprove the following.

Let F be a collection of sets in \mathbb{R}^n, and let $S = \bigcup_{A \in F} A$ and $T = \bigcap_{A \in F} A$.

1. If x is an accumulation point of T then x is an accumulation point of each A in F.

 Proof. Let x be an accumulation point of T. Then for any ball centered at x, there is an element $t \neq x$ in T. Since T is the intersection of all A in F, t is an element common to every set in F. This shows that if x is an accumulation point of T, x is an accumulation point for each A in F. \qed

2. x is an accumulation point of S, then x is an accumulation point of at least one A in F.

 A counterexample: Let Q_n be the set of all fractions in \mathbb{R}^1 with denominator n in lowest terms. For example $Q_6 = \{\ldots, \frac{1}{6}, \frac{5}{6}, \frac{7}{6}, \ldots\}$ Then $S = \bigcup_{n \in \mathbb{N}} Q_n = \mathbb{Q}$, and every real number is an accumulation point of S, but $\sqrt{2}$ for example is not an accumulation point for any single Q_n.