Problem Statement: Consider the metric space \(\mathbb{Q} \) of rational numbers with the Euclidean metric of \(\mathbb{R} \). Let \(S \) consist of all rational numbers in the open interval \((a, b) \), where \(a \) and \(b \) are irrational. Then \(S \) is closed and bounded subset of \(\mathbb{Q} \) which is not compact.

Proof. Suppose for contradiction that \(S \) is compact. Construct an open covering \(T = \{ B_r(x) | r = \frac{x-a}{2}, x \in S \} \). Then there exists no finite sub-cover of \(T \) since \(a, b \) are both irrational. Thus, \(S \) is not compact.

Next, note that \(S \) is bounded. Let \(x \in \mathbb{Q} - S \), then \(x < a \), or \(x > b \). If \(x < a \) then \(B_r(x) = (x-r, x+r) \cap \mathbb{Q} \subseteq \mathbb{Q} - S \), where \(d = d(x, a) \). Likewise, if \(x > b \) then \(B_r(x) = (x-r, x+r) \cap \mathbb{Q} \subseteq \mathbb{Q} - S \), where \(d = d(x, b) \). Hence, \(x \) is an interior point of \(\mathbb{Q} - S \). That is, \(\mathbb{Q} - S \) is open, or equivalently, \(S \) is closed.