Solution by Carly Osherow
Problem 1.20

Problem Statement: Prove the comparison property for suprema.

Proof. Given nonempty subsets S and T of \mathbb{R} such that $s \leq t$ for every s in S and t in T. If T has a supremum then S has a supremum and

$$\sup S \leq \sup T.$$

Let $t_0 \in T$. If $\sup T$ exists, we know $t_0 \leq \sup T$ and $s \leq t_0$, so t_0 is an upper bound for S, thus S has a supremum by the completeness axiom. From this we gather $\sup S \leq t_0 \leq \sup T$, thus $\sup S \leq \sup T$. \qed