Exam 2

For partial credit, please show your work. No calculators or technology allowed, but it is OK to leave work in relatively unsimplified form.

Problem 1 (15 pts) Contours. Consider the function \(f(x, y) = y - \sin x \).

a) Fill out the following on the axes to the right:

- Sketch the level lines \(f(x, y) = d \) for \(d = -1, 0, 1 \).
- Place a dot at the point \(P = (0, 0) \), and sketch the gradient vector \(\nabla f(P) \) at this point. (Focus on its direction, don’t worry about length.)
- Sketch the tangent line to the level curve \(f(x, y) = 0 \) at \(Q = (\pi/2, 1) \).

b) What is the average rate of change in the elevation of an ant who moves from \(P = (0, 0) \) to \(Q = (\pi/2, 1) \) along the surface of \(f \)?

c) Suppose the ant were stationed at the point on the surface corresponding to \((x, y) = (\pi/2, 1) \) and wanted to go downhill as quickly as possible. In which direction should she head? Add a vector pointing in this direction to your contour plot.
Problem 2 (10 pts) Limits and continuity. Evaluate the following limits, or show that they do not exist.

a) \[\lim_{(x,y) \to (0,0)} \cos(x+y)e^{-\frac{1}{x^2+y^2}}. \]

b) \[\lim_{(x,y) \to (0,0)} \frac{x}{2x+y}. \]

Problem 3 (10 pts) Gradients and directional derivatives. Let \(f(x,y) = e^{xy} + x \cos y + 2y. \)

a) Calculate the gradient \(\nabla f. \)

b) Calculate the directional derivative \(D_v f(P), \) where \(v = (1,1) \) and \(P = (0,0). \)
Problem 4 (10 pts) Chain Rule.

a) Let \(f(x, y) = xy^2 + 2x \), where \(x = \sin(r + s) \) and \(y = sr^2 \). Calculate \(\partial f / \partial r \).

b) Suppose \(x^2 + y^2 - 2z^2 + 12x - 8z - 4 = 0 \). Calculate \(\partial z / \partial x \).

Problem 5 (10 pts) Tangent lines and planes. Let \(f(x, y) = y \ln x + x + y \).

a) Calculate the equation of the tangent line to the level curve \(f(x, y) = 1 \) at the point \((1, 0) \).

b) Calculate the equation of the tangent plane to the graph of \(z = f(x, y) \) at the point \((1, 0, 1) \).
Problem 6 (10 pts) Elementary integrals in two and three dimensions

a) Evaluate \(\int_{-1}^{1} \int_{-2}^{2} (x + y) \, dy \, dx \)

b) Evaluate \(\int_{0}^{1} \int_{2}^{3} \int_{-\pi/2}^{\pi/2} x \cos z \, dz \, dy \, dx \)

Problem 7 (10 pts) Changing the order of integration. Suppose you want to integrate some function \(f(x, y) \) over the following region:

Set up the integral in two ways: A) where you integrate first with respect to \(x \), then with respect to \(y \), and B) where you integrate first with respect to \(y \), then with respect to \(x \). (Note that you do not need to solve these integrals, just set them up.)

Method A (\(dxdy \))

Method B (\(dydx \))
Problem 8 (5 pts) Almost done! Reward yourself by drawing an elephant in lederhosen for five easy points. (Feel free to switch out lederhosen for the strange accoutrement of your choice.)

Problem 9 (10 pts) Identifying regions of integration. Sketch the region over which the following area or volume integrals are being taken:

A \[\int_0^1 \int_0^{\sqrt{1-x^2}} f(x, y) \, dy \, dx \]

B \[\int_{-1}^1 \int_{-x^2}^{x^2} f(x, y) \, dy \, dx \]

Problem 10 (10 pts) Area and volume integrals over non-square regions

a) Find the area of the region R bounded by \(x = 0, x = \pi, \) and \(y = \sin x. \)

b) Find the volume of the tetrahedron whose vertices are \((0, 0, 0), (2, 0, 0), (0, 4, 0), (0, 0, 8). \) (Hint: first sketch the region. Then use your sketch to help set up an appropriate integral.)