Section 16.3: Conservative Vector Fields

Key points:

1. In the last section we were introduced to the idea of a conservative vector field, namely, a vector field $F(x, y, z): \mathbb{R}^3 \rightarrow \mathbb{R}^3$ which is the gradient of some function $V: \mathbb{R}^3 \rightarrow \mathbb{R}$. The function V is called a potential for the vector field F. The terminology originates in physics, where phrases like “potential energy” might be familiar to you, and ultimately trace back to the same core idea of a potential. Gravity and electromagnetism are two forces that can often be described in terms of a potential.

2. The wonderful news about conservative vector fields is that they allow us to solve path integrals via a theorem analogous to the Fundamental Theorem of Calculus: for a vector field F with potential V, the path integral along any path connecting points P and Q is

$$\int_c F \cdot ds = V(Q) - V(P).$$

Note that there are two immediate implications of this fact:

- a path integral of a conservative vector field from P to Q doesn’t actually depend on the particular path chosen, i.e. is path independent.
- the path integral of a conservative vector field along any closed path (one that starts and stops at the same place) is zero.

3. How do you check when a vector field is conservative? There are a couple of ways:

- On an open, connected domain, path independence guarantees that a field is conservative.
- On a simply connected domain, it is sufficient to check the cross partial relations: if $F = (F_1, F_2, F_3)$, check that

$$\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}, \quad \frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y}, \quad \frac{\partial F_3}{\partial x} = \frac{\partial F_1}{\partial z}.$$

Problems:

1. (#1) Let $V(x, y, z) = xy \sin(yz)$ and $F = \nabla V$. Evaluate $\int_c F \cdot ds$, where c is any path from $(0, 0, 0)$ to $(1, 1, \pi)$.

2. (# 9) Find a potential function for $F = (y^2, 2xy + e^z, ye^z)$.

3. (# 11) Is it possible to find a potential field for $F = (\cos(xz), \sin(yz), xy \sin z)$? How do you know?

4. (# 18) Evaluate $\int_c \sin x dx + z \cos y dy + \sin y dz$ were c is the ellipse $4x^2 + 9y^2 = 36$, oriented clockwise.