Exam 1

Please show your work. Each subproblem is worth 5 points.

Problem 1 TRIGONOMETRIC FUNCTIONS.

For the problems below, please refer to the following figure:

a) Sketch radial segments that correspond to the angles \(\theta_1 = \pi/4 \) and \(\theta_2 = -4\pi/3 \) radians. Label these angles.

b) From the point where your segments intersect the circle, draw verticals that connect to the \(x \)-axis. This process should produce right triangles. Label the vertical and horizontal legs of the first triangle \(x_1 \) and \(y_1 \), respectively. Do the same for the second triangle, using labels \(x_2 \) and \(y_2 \).

c) Below, indicate the sign of each of these \(x_i \)'s and \(y_i \)'s by circling the appropriate word:
 \(x_1 \) positive/negative
 \(y_1 \) positive/negative
 \(x_2 \) positive/negative
 \(y_2 \) positive/negative

d) Without doing any calculations, say whether \(\tan \theta_1 \) is positive or negative, and explain why. Do the same for \(\tan \theta_2 \). (Use the definition of \(\tan \) and your answer to the previous problem.)

\[
\tan \theta_1 = \text{positive} \quad (\text{since} \quad \frac{y_1}{x_1} = \frac{\text{pos}}{\text{pos}} = \text{positive}).
\]

\[
\tan \theta_2 = \text{negative} \quad (\text{since} \quad \frac{y_2}{x_2} = \frac{\text{pos}}{\text{neg}} = \text{neg-sive}).
\]

e) Finally, say what \(\tan \theta_1 \) and \(\tan \theta_2 \) actually are.

\[
\tan \theta_1 = 1
\]

\[
\tan \theta_2 = -\frac{\sqrt{3}}{2}
\]

\[
\text{Use 45-45-90 triangle}
\]

\[
\text{Use 30-60-90 triangle}
\]
Problem 2 LOGARITHMS AND EXPONENTS

The questions that follow will ask you plot some things on the axes below:

a) Sketch the graph of \(f(x) = 3^x \) on the axes above.

b) Sketch the graph of \(g(x) = \log_3(x) \) on the axes above.

c) What are the domain and range of \(f(x) \) and \(g(x) \)? Express your answers in interval notation.

\[
\begin{align*}
\text{Dom. } f & : (-\infty, \infty) \\
\text{Range } f & : (0, \infty) \\
\text{Dom. } g & : (0, \infty) \\
\text{Range } g & : (-\infty, \infty)
\end{align*}
\]

d) Suppose \(3^x = 2 \). What is \((3^{x+1})^2 \)?

\[
(3^{x+1})^2 = 3^{2(x+1)} = 3^{2x+2} = 3^2 \cdot 3^2 = 9 \cdot 9 = 81
\]

e) Find \(\log_3(27^{1/3}) \)

\[
\begin{align*}
27 &= 3^3 \\
\text{So, } 27^{1/3} &= (3^3)^{1/3} = 3 \\
\text{Thus, } \log_3 27^{1/3} &= \log_3 3 = 1
\end{align*}
\]
Problem 3 **Average and Instantaneous Velocity**

Suppose the position of a particle is given by the equation \(s(t) = -t^2 + 4t \).

a) Where is \(s(t) \geq 0 \)? Give your answer in interval notation.

 \(s(t) \) is a **quadratic**, thus graph is a **parabola**.
 Since leading coefficient is negative, graph opens down.

 Roots of \(s(t) = -t^2 + 4t \) are \(t = 0 \) and \(t = 4 \).
 \(s(t) \geq 0 \) in \([0, 4] \).

b) Sketch the graph of \(s(t) \) over the interval you found in part a.)

 ![Graph of s(t)](image)(c) On your graph, draw dots at the points corresponding to \(t = 1 \) and \(t = 3 \), and sketch the secant line connecting them.

d) Formally calculate the average velocity over the interval \([1, 3] \). Why could you have guessed this answer just from the shape of the graph, without doing any calculations? (Hint: think symmetry.)

 \[
 V_{avg} = \frac{s(3) - s(1)}{3 - 1} = \frac{[-9 + 12] - [-1 + 4]}{2} = \frac{3 - 3}{2} = 0.
 \]

 We could have guessed this because \(x = 1 \) and \(x = 3 \) are symmetric within the interval \([0, 4] \).

e) Suppose you wanted to calculate the instantaneous velocity at \(t = 1 \). Describe in detail how you could use a table to calculate the answer. Give concrete examples of numbers and/or intervals you might use, and explain what needs to be calculated (though you need not calculate it.)

<table>
<thead>
<tr>
<th>Interval</th>
<th>(V_{avg})</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1, 2]</td>
<td>(\frac{s(2) - s(1)}{2 - 1})</td>
</tr>
<tr>
<td>[1, 1.1]</td>
<td>(\frac{s(1.1) - s(1)}{1.1 - 1})</td>
</tr>
<tr>
<td>[1.1, 1]</td>
<td>(\frac{s(1) - s(1.1)}{1 - 1.1})</td>
</tr>
</tbody>
</table>
Problem 4 LIMIT MISCELLANEA

a) Describe in your own words what the expression \(\lim_{x \to c} f(x) = L \) means. (Your description can be informal, but should be complete and accurate.)

As \(x \) gets arbitrarily close to \(c \), \(f(x) \) gets arbitrarily close to \(L \). [We exclude the case \(x = c \); we define \(f \) as a limit.]

b) Suppose that \(\lim_{x \to 0} f(x) = 3 \). Find \(\lim_{x \to 0} \frac{\sqrt{x} - 1}{x + 1} f(x) \).

\[
\lim_{x \to 0} \frac{\sqrt{x} - 1}{x + 1} f(x) = \left(\lim_{x \to 0} \frac{\sqrt{x} - 1}{x + 1} \right) \cdot \lim_{x \to 0} f(x) = \frac{0}{0} \cdot 3 = \frac{6}{6} = 1.
\]

\[\text{Diagram of } f(x) \text{ satisfying conditions.}\]

(c) Sketch the graph a function \(f(x) \) that satisfies the following:
\(\lim_{x \to 2^-} f(x) = -\infty \), \(\lim_{x \to 2^+} f(x) = \infty \), \(\lim_{x \to 4^-} f(x) = 1 \), \(\lim_{x \to 4^+} f(x) = 2 \).

\[\text{Sketch of graph.}\]

d) Concept question: suppose you know that \(f(3) = 2 \). Can \(\lim_{x \to 3} f(x) = 4 \)? Briefly explain why or why not.

Yes. The value \(f(3) = 2 \) at \(x = 3 \) has nothing to do with \(\lim_{x \to 3} f(x) \).

\[\text{Sketch of graph with value at } x = 3.\]

e) True or False: if for some \(f \) both the left hand limit \(\lim_{x \to c^-} f(x) \) exists and the right hand limit \(\lim_{x \to c^+} f(x) \) exists, then the two-sided limit \(\lim_{x \to c} f(x) \) must exist as well. Explain why or why not.

False. The left and right hand limits could be different, in which case \(\lim_{x \to c} f(x) \) would not exist.