Estimating the mean when you don’t know σ

Formulas

Suppose a simple random sample of size n is taken from a normal population with unknown mean and standard deviation.

- A C level confidence interval for μ is
 \[
 \bar{x} \pm t^* \frac{s}{\sqrt{n}},
 \]
 where \bar{x} is the sample mean, s is the sample standard deviation, and t^* is the value such that area C is between $-t^*$ and t^* on a $T(n-1)$ curve. (The value t^*s/\sqrt{n} is called the margin of error.)

- To calculate the $P-$value of \bar{x} for a null hypothesis of the form $H_0 : \mu = \mu_0$, first form the test statistic
 \[
 t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}.
 \]

Then

- if $H_a : \mu < \mu_0$, the $P-$value is the area under a $T(n-1)$ curve to the left of t.
- if $H_a : \mu > \mu_0$, the $P-$value is the area under a $T(n-1)$ curve to the right of t.
- if $H_a : \mu \neq \mu_0$, the $P-$value is the area under a $T(n-1)$ curve to the right of $|t|$ and to the left of $-|t|$.

Practice Problem

1. Suppose you take an SRS of size 5 and your data is as follows:

 $-1.64, 1.48, 0.17, -1.17, -0.82$.

 (a) Find \bar{x}.

 (b) Find s.
(c) Estimate the mean of the population from which this data came from, and give 95% confidence bound for your estimate. What assumptions are you making?

(d) Use your data to test the hypothesis $H_0 : \mu = 0$ against the alternative $H_a : \mu \neq 0$. Can you reject H_0 at the 5% level?