Problem 1 State the Mean Value Theorem

Let \(f \) be continuous on \([a, b]\), differentiable on \((a, b)\). Then

\[\exists c \in [a, b] \text{ such that} \]

\[f'(c) = \frac{f(b) - f(a)}{b - a} \]

Problem 2 Does the function \(f(x) = x^{1/3} \) satisfy the hypotheses of the mean value theorem on the interval \([0, 1]\)? Why or why not?

Yes. \(f(x) \) is continuous on \([0, 1]\)

\[f'(x) = \frac{1}{3} x^{-2/3} = \frac{1}{3x^{2/3}} \text{ is differentiable on } (0, 1) \]

Problem 3 Find the intervals on which \(f(x) = -x^3 + 2x^2 \) is increasing or decreasing.

\[f'(x) = -3x^2 + 4x \]

\[x \begin{array}{ll} - \infty & x \in (0, \frac{4}{3}) \\ 0 & \frac{4}{3} < x \end{array} \]

So \(f \) is increasing on \((0, \frac{4}{3})\), decreasing on \((-\infty, 0) \cup (\frac{4}{3}, \infty)\).

Problem 4 Find the absolute maximum and minimum values of \(f(x) = e^x - 2x \) on \([0, 1]\).

\[f'(x) = e^x - 2 \Rightarrow e^x = 2 \Rightarrow x = \ln 2 \]

\[f''(x) = e^x > 0 \text{ everywhere} \Rightarrow \ln 2 \text{ is a min} \]

\[f(0) = e^0 - 0 = 1 \quad \Delta(1) = e^1 - 2 = 0.7 \Rightarrow x = 1 \text{ is a max} \]

Problem 5 Draw a picture of monkey in a sailor suite. Find the critical points.